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Abstract
In this chapter the classical field equations associated with the

Kähler action are studied. The study of the extremals of the Kähler
action has turned out to be extremely useful for the development of
TGD. Towards the end of year 2003 quite dramatic progress occurred
in the understanding of field equations and it seems that field equations
might be in well-defined sense exactly solvable.

1. General considerations
The vanishing of Lorentz 4-force for the induced Kähler field means
that the vacuum 4-currents are in a mechanical equilibrium. Lorentz
4-force vanishes for all known solutions of field equations which in-
spires the hypothesis that all extremals or at least the absolute minima
of Kähler action satisfy the condition. The vanishing of the Lorentz
4-force in turn implies local conservation of the ordinary energy mo-
mentum tensor. The corresponding condition is implied by Einstein’s
equations in General Relativity. The hypothesis would mean that the
solutions of field equations are what might be called generalized Bel-
trami fields. The condition implies that vacuum currents can be non-
vanishing only provided the dimension DCP2 of the CP2 projection
of the space-time surface is less than four so that in the regions with
DCP2 = 4, Maxwell’s vacuum equations are satisfied.

The hypothesis that Kähler current is proportional to a product
of an arbitrary function ψ of CP2 coordinates and of the instanton
current generalizes Beltrami condition and reduces to it when electric
field vanishes. Kähler current has vanishing divergence for DCP2 <
4, and Lorentz 4-force indeed vanishes. The remaining task would
be the explicit construction of the imbeddings of these fields and the
demonstration that field equations can be satisfied.

Under additional conditions magnetic field reduces to what is known
as Beltrami field. Beltrami fields are known to be extremely com-
plex but highly organized structures. The natural conjecture is that
topologically quantized many-sheeted magnetic and Z0 magnetic Bel-
trami fields and their generalizations serve as templates for the helical
molecules populating living matter, and explain both chirality selec-
tion, the complex linking and knotting of DNA and protein molecules,
and even the extremely complex and self-organized dynamics of bio-
logical systems at the molecular level.

Field equations can be reduced to algebraic conditions stating that
energy momentum tensor and second fundamental form have no com-
mon components (this occurs also for minimal surfaces in string mod-
els) and only the conditions stating that Kähler current vanishes, is
light-like, or proportional to instanton current, remain and define the
remaining field equations. The conditions guaranteing topologization
to instanton current can be solved explicitly. Solutions can be found
also in the more general case when Kähler current is not proportional
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to instanton current. On basis of these findings there are strong reasons
to believe that classical TGD is exactly solvable.

2. Absolute minimization of Kähler action and second law of ther-
modynamics
By quantum classical correspondence the non-deterministic space-time
dynamics should mimic the dissipative dynamics of the quantum jump
sequence. Beltrami fields appear in physical applications as asymp-
totic self organization patterns for which Lorentz force and dissipation
vanish. This suggests that absolute minima of Kähler action corre-
spond to space-time sheets which asymptotically satisfy generalized
Beltrami conditions so that one can indeed assign to the final (rather
than initial!) 3-surface a unique 4-surface apart from effects related
to non-determinism. Absolute minimization abstracted to purely al-
gebraic generalized Beltrami conditions would make sense also in the
p-adic context. Also the equivalence of absolute minimization with
the second law strongly suggests itself. Of course, one must keep mind
open for the possibility that it is the second law of thermodynamics
which replaces absolute minimization as the fundamental principle.

3. The dimension of CP2 projection as classifier for the fundamen-
tal phases of matter
The dimension DCP2 of CP2 projection of the space-time sheet en-
countered already in p-adic mass calculations classifies the fundamen-
tal phases of matter. For DCP2 = 4 empty space Maxwell equations
hold true. This phase is chaotic and analogous to de-magnetized phase.
DCP2 = 2 phase is analogous to ferromagnetic phase: highly ordered
and relatively simple. DCP2 = 3 is the analog of spin glass and liquid
crystal phases, extremely complex but highly organized by the prop-
erties of the generalized Beltrami fields. This phase is the boundary
between chaos and order and corresponds to life emerging in the in-
teraction of magnetic bodies with bio-matter. It is possible only in a
finite temperature interval (note however the p-adic hierarchy of criti-
cal temperatures) and characterized by chirality just like life.

4. Specific extremals of Kähler action
The study of extremals of Kähler action represents more than decade
old layer in the development of TGD.

a) The huge vacuum degeneracy is the most characteristic feature of
Kähler action (any 4-surface having CP2 projection which is Legendre
sub-manifold is vacuum extremal, Legendre sub-manifolds of CP2 are
in general 2-dimensional). This vacuum degeneracy is behind the spin
glass analogy and leads to the p-adic TGD. As found in the second
part of the book, various particle like vacuum extremals also play an
important role in the understanding of the quantum TGD.

b) The so called CP2 type vacuum extremals have finite, nega-
tive action and are therefore an excellent candidate for real particles
whereas vacuum extremals with vanishing Kähler action are candi-
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dates for the virtual particles. These extremals have one dimensional
M4 projection, which is light like curve but not necessarily geodesic
and locally the metric of the extremal is that of CP2: the quantiza-
tion of this motion leads to Virasoro algebra. Space-times with topol-
ogy CP2#CP2#...CP2 are identified as the generalized Feynmann dia-
grams with lines thickened to 4-manifolds of ”thickness” of the order of
CP2 radius. The quantization of the random motion with light veloc-
ity associated with the CP2 type extremals in fact led to the discovery
of Super Virasoro invariance, which through the construction of the
configuration space geometry, becomes a basic symmetry of quantum
TGD.

c) There are also various non-vacuum extremals.
i) String like objects, with string tension of same order of magnitude
as possessed by the cosmic strings of GUTs, have a crucial role in TGD
inspired model for the galaxy formation and in the TGD based cos-
mology.
ii) The so called massless extremals describe non-linear plane waves
propagating with the velocity of light such that the polarization is
fixed in given point of the space-time surface. The purely TGD:eish
feature is the light like Kähler current: in the ordinary Maxwell the-
ory vacuum gauge currents are not possible. This current serves as a
source of coherent photons, which might play an important role in the
quantum model of bio-system as a macroscopic quantum system.
iii) In the so called Maxwell’s phase, ordinary Maxwell equations for
the induced Kähler field are satisfied in an excellent approximation. A
special case is provided by a radially symmetric extremal having an
interpretation as the space-time exterior to a topologically condensed
particle. The sign of the gravitational mass correlates with that of
the Kähler charge and one can understand the generation of the mat-
ter antimatter asymmetry from the basic properties of this extremal.
The possibility to understand the generation of the matter antimatter
asymmetry directly from the basic equations of the theory gives strong
support in favor of TGD in comparison to the ordinary EYM theo-
ries, where the generation of the matter antimatter asymmetry is still
poorly understood.

1 Introduction

The physical interpretation of the Kähler function and the TGD based space-
time concept are the basic themes in the third part of the book. The aim
is to develop what might be called classical TGD at fundamental level.
The strategy is simple: try to guess the general physical consequences of the
configuration space geometry and of the TGD based gauge field concept and

7



study the simplest extremals of Kähler action and try to abstract general
truths from their properties.

The fundamental underlying assumptions are the following:
a) The 4-surface associated with given 3-surface defined by Kähler func-

tion K as an absolute minimum or some more general preferred extremal of
the Kähler action is identifiable as a classical space-time. In [E2] it was pro-
posed that absolute value of Kähler action inside regions where the action
density has definite sign is minimized or maximized. Number theoretically
these extremals would correspond to Kähler calibrations and their duals hav-
ing representation has hyper-quaternionic or co-hyper-quaternionic surfaces
of hyper-octonionic imbedding space. . . Hence the notion of space-time
would not not completely objective: similar situation is encountered in M-
theory (mirror symmetry [?]).

Due to the preferred extremal property classical space-time can be also
regarded as a generalized Bohr orbit so that the quantization of the vari-
ous parameters associated with a typical extremal of the Kähler action is
expected to take place in general. In TGD quantum states corresponds to
quantum superpositions of these classical space-times so that this classical
space-time is certainly not some kind of effective quantum average space-
time.

It must be emphasized that absolute minimization could be replaced by
any other principle allowing to select a unique extremal going through X3

belonging to 7-D light-like causal determinant determined as the boundary
of the union of future or past directed light cones M4± × CP2. Indeed, the
number theoretical considerations of [E2] favor the separate minimization of
magnitudes of positive and contributions to the Kähler action. This option
seems to be also more physical since it reduces to the minimization of the
energy and thus to fixing of time derivatives of imbedding space coordinates
at X3. Since the considerations of this chapter do to depend on the detailed
form of the variational principle, I leave it for the reader to replace ”absolute
minimization” by some more general phrase everywhere.

b) The bosonic vacuum functional of the theory is the exponent of the
Kähler function ΩB = exp(K). This assumption is the only assumption
about the dynamics of the theory and is necessitated by the requirement of
divergence cancellation.

c) Renormalization group invariance and spin glass analogy. The value
of the Kähler coupling strength is such that the vacuum functional exp(K)
is analogous to the exponent exp(H/T ) defining the partition function of
a statistical system at critical temperature. This allows Kähler coupling
strength to depend on zero modes of the configuration space metric and
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as already found there is very attractive hypothesis determining completely
the dependence of the Kähler coupling strength on the zero modes based on
p-adic considerations motivated by the spin glass analogy.

d) In spin degrees of freedom the massless Dirac equation for the induced
spinor fields with modified Dirac action defines classical theory: this is in
complete accordance with the proposed definition of the configuration space
spinor structure.

In the case that absolute minimization is taken as the fundamental prin-
ciple, the assumption about the form of the vacuum functional leads to
principle, which we shall call ”Yin-Yang” principle in what follows.

a) Kähler function is essentially a Maxwell action and as such not positive
definite: the generation of the Kähler electric fields gives negative contri-
bution to the Kähler action. Therefore the absolute minima of the Kähler
action are expected to have in general non-positive Kähler action and to
correspond to space-times carrying Kähler- electric fields. This tendency of
the Kähler function to become negative corresponds to the ”Yin”-aspect of
our principle.

b) Vacuum functional favors 3-surfaces with the property that the value
of the Kähler function is positive. This tendency is the ”Yang” aspect
of the principle. Together these tendencies stabilize the theory since they
imply that for very large systems the average Kähler action per volume is
essentially zero to guarantee that vacuum amplitude is non-vanishing: in
particular vacuum functional doesn’t diverge for any configurations.

If preferred extrema correspond to Kähler calibrations or their duals [E2],
Yin-Yang principle is modified to a local principle. For Kähler calibrations
(their duals) the absolute value of action in given region is minimized (maxi-
mized). A given region with positive (negative sign) of action density favors
Kähler electric (magnetic) fields. In long length scales the average density
of Kähler action per four-volume tends to vanish so that Kähler function of
the entire universe is expected to be very nearly zero. This regularizes the
theory automatically but positive values of Kähler function are of course
favored.

The geometrization of the classical gauge fields in terms of the induced
gauge field concept is also important concerning the physical interpretation.
Electro-weak gauge potentials correspond to the space-time projections of
the spinor connection of CP2, gluonic gauge potentials to the projections of
the Killing vector fields of CP2 and gravitational field to the induced metric.
The topics to be discussed in this part of the book are summarized briefly
in the following.

What the selection of preferred extremals of Kähler action might mean
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has remained a longstanding problem and real progress occurred only quite
recently (I am writing this towards the end of year 2003).

a) The vanishing of Lorentz 4-force for the induced Kähler field means
that the vacuum 4-currents are in a mechanical equilibrium. Lorentz 4-
force vanishes for all known solutions of field equations which inspires the
hypothesis that all preferred extremals of Kähler action satisfy the condition.
The vanishing of the Lorentz 4-force in turn implies local conservation of the
ordinary energy momentum tensor. The corresponding condition is implied
by Einstein’s equations in General Relativity. The hypothesis would mean
that the solutions of field equations are what might be called generalized
Beltrami fields. The condition implies that vacuum currents can be non-
vanishing only provided the dimension DCP2 of the CP2 projection of the
space-time surface is less than four so that in the regions with DCP2 = 4,
Maxwell’s vacuum equations are satisfied.

b) The hypothesis that Kähler current is proportional to a product of
an arbitrary function ψ of CP2 coordinates and of the instanton current
generalizes Beltrami condition and reduces to it when electric field vanishes.
Kähler current has vanishing divergence for DCP2 < 4, and Lorentz 4-force
indeed vanishes. The remaining task would be the explicit construction of
the imbeddings of these fields and the demonstration that field equations
can be satisfied.

c) By quantum classical correspondence the non-deterministic space-time
dynamics should mimic the dissipative dynamics of the quantum jump se-
quence. Beltrami fields appear in physical applications as asymptotic self
organization patterns for which Lorentz force and dissipation vanish. This
suggests that absolute minima of Kähler action correspond to space-time
sheets which asymptotically satisfy generalized Beltrami conditions so that
one can indeed assign to the final 3-surface a unique 4-surface apart from
effects related to non-determinism. Absolute minimization abstracted to
purely algebraic generalized Beltrami conditions makes sense also in the p-
adic context. The equivalence of the absolute minimization with the second
law of thermodynamics strongly suggests itself. Of course, one must keep
mind open for the possibility that it is the second law of thermodynamics
which replaces the proposed candidates as the fundamental principle.

This chapter is mainly devoted to the study of the basic extremals of the
Kähler action besides the detailed arguments supporting the view that the
preferred extrema satisfy generalized Beltrami conditions asymptotically. It
is perhaps good to emphasize that only extremals rather than preferred ex-
tremals are in question. These extremals can however form building blocks
of genuine absolute minima or space-time surface satisfying an action prin-
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ciple reducing to extremization of absolute value of Kähler action in regions
where action density has definite sign, and are therefore interesting. Also
the small deformations of them, say vacuum extremals, are expected to be
important physically. Extremals decompose in a natural manner to vacuum
and non-vacuum extremals and both kinds of extremals are studied.

2 General considerations

In this section field equations and their physical interpretation are discussed.
Quantum classical correspondence suggests that the non-deterministic dy-
namics of Kähler action makes possible self-referential dynamics in the sense
that larger space-time sheet perform smoothed out mimicry of the dynam-
ics at smaller space-time sheets. The fact that the divergence of the energy
momentum tensor, Lorentz 4-force, does not vanish in general makes possi-
ble the mimicry of even dissipation and of the second law. For asymptotic
self organization patterns for which dissipation is absent the Lorentz 4-force
must vanish. This condition is guaranteed if Kähler current is proportional
to the instanton current in the case that CP2 projection of the space-time
sheet is smaller than four and vanishes otherwise. An attractive identifica-
tion for the vanishing of Lorentz 4-force is as a condition equivalent with
the absolute minimization of Kähler action so that this principle would be
essentially equivalent with the second law of thermodynamics.

2.1 Long range classical weak and color gauge fields as cor-
relates for dark massless weak bosons

Long ranged electro-weak gauge fields are unavoidably present when the di-
mension D of the CP2 projection of the space-time sheet is larger than 2.
Classical color gauge fields are non-vanishing for all non-vacuum extremals.
This poses deep interpretational problems. If ordinary quarks and leptons
are assumed to carry weak charges feeded to larger space-time sheets within
electro-weak length scale, large hadronic, nuclear, and atomic parity break-
ing effects, large contributions of the classical Z0 force to Rutherford scatter-
ing, and strong isotopic effects, are expected. If weak charges are screened
within electro-weak length scale, the question about the interpretation of
long ranged classical weak fields remains.
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2.1.1 Various interpretations for the long ranged classical electro-
weak fields

During years I have discussed several solutions to the problems listed above.
Option I: The trivial solution of the constraints is that Z0 charges are

neutralized at electro-weak length scale. The problem is that this option
leaves open the interpretation of classical long ranged electro-weak gauge
fields unavoidably present in all length scales when the dimension for the
CP2 projection of the space-time surface satisfies D > 2.

Option II: Second option involves several variants but the basic assump-
tion is that nuclei or even quarks feed their Z0 charges to a space-time sheet
with size of order neutrino Compton length. The large parity breaking ef-
fects in hadronic, atomic, and nuclear length scales is not the only difficulty.
The scattering of electrons, neutrons and protons in the classical long range
Z0 force contributes to the Rutherford cross section and it is very difficult
to see how neutrino screening could make these effects small enough. Strong
isotopic effects in condensed matter due to the classical Z0 interaction en-
ergy are expected. It is far from clear whether all these constraints can be
satisfied by any assumptions about the structure of topological condensate.

Option III: During 2005 (27 years after the birth of TGD!) third option
solving the problems emerged based on the progress in the understanding
of the basic mathematics behind TGD.

In ordinary phase the Z0 charges of elementary particles are indeed neu-
tralized in intermediate boson length scale so that the problems related to
the parity breaking, the large contributions of classical Z0 force to Ruther-
ford scattering, and large isotopic effects in condensed matter, trivialize.

Classical electro-weak gauge fields in macroscopic length scales are iden-
tified as space-time correlates for the gauge fields created by dark matter,
which corresponds to a macroscopically quantum coherent phase for which
elementary particles possess complex conformal weights such that the net
conformal weight of the system is real.

In this phase U(2)ew symmetry is not broken below the scaled up weak
scale except for fermions so that gauge bosons are massless below this length
scale whereas fermion masses are essentially the same as for ordinary mat-
ter. Of course, also scale down copies of also fermionic spectra are possible
and infinite hierarchy of scaled down copies of standard model physics is
expected. By charge screening gauge bosons look massive in length scales
much longer than the relevant p-adic length scale. The large parity breaking
effects in living matter (chiral selection for bio-molecules) support the view
that dark matter is what makes living matter living.
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2.1.2 Classical color gauge fields

Classical long ranged color gauge fields always present for non-vacuum ex-
tremals are interpreted as space-time correlates of gluon fields associated
with dark copies of hadron physics. It seems that this picture is indeed
what TGD predicts. A very special feature of classical color fields is that
the holonomy group is Abelian. This follows directly from the expression
gA
αβ ∝ HAJαβ of induced gluon fields in terms of Hamiltonians HA of color

isometries and induced Kähler form Jαβ . This means that classical color
magnetic and electric fluxes reduce to the analogs of ordinary magnetic fluxes
appearing in the construction of configuration space geometry [B2, B3].

By a local color rotation the color field can be rotated to a fixed direction
so that genuinely Abelian field would be in question apart from the possible
presence of gauge singularities making impossible a global selection of color
direction. These singularities could be present since Kähler form defines a
magnetic monopole field. An interesting question inspired by quantum clas-
sical correspondence is what the Abelian holonomy tells about the sources
of color gauge fields and color confinement.

For instance, could Abelian holonomy mean that colored gluons (and
presumably also other colored particles) do not propagate in the p-adic
length scale considered? Color neutral gluons would propagate but since
also their sources must be color neutral, they should have vanishing net
color electric fluxes. This form of confinement would allow those states of
color multiplets which have vanishing color charges and obviously symmetry
breaking down to U(1)× U(1) would be in question. This would serve as a
signal for monopole confinement which would not exclude higher multipoles
for the Abelian color fields. This kind of fields appear in the the TGD based
model for nuclei as nuclear strings bound together by color flux tubes [F8].

2.2 Is absolute minimization the correct variational princi-
ple?

One can criticize the assumption that extremals correspond to absolute min-
ima, and the number theoretical vision discussed in [E2] indeed favors the
separate minimization of magnitudes of positive and negative contributions
to the Kähler action.

For this option Universe would do its best to save energy, being as near
as possible to vacuum. Also vacuum extremals would become physically rel-
evant: note that they would be only inertial vacua and carry non-vanishing
density gravitational energy. The non-determinism of the vacuum extremals
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would have an interpretation in terms of the ability of Universe to engineer
itself.

The 3-surfaces for which CP2 projection is at least 2-dimensional and
not a Lagrange manifold would correspond to non-vacua since conservation
laws do not leave any other option. The variational principle would favor
equally magnetic and electric configurations whereas absolute minimization
of action based on SK would favor electric configurations. The positive
and negative contributions would be minimized for 4-surfaces in relative
homology class since the boundary of X4 defined by the intersections with
7-D light-like causal determinants would be fixed. Without this constraint
only vacuum bubbles would result.

The attractiveness of the number theoretical variational principle from
the point of calculability of TGD would be that the initial values for the
time derivatives of the imbedding space coordinates at X3 at light-like 7-D
causal determinant could be computed by requiring that the energy of the
solution is minimized. This could mean a computerizable solution to the
construction of Kähler function.

The number theoretic approach based on the properties of quaternions
and octonions discussed in the chapter [E2] leads to a proposal for the gen-
eral solution of field equations based on the generalization of the notion
of calibration [16] providing absolute minima of volume to that of Kähler
calibration. This approach will not be discussed in this chapter.

2.3 Field equations

The requirement that Kähler action is stationary leads to the following field
equations in the interior of the four-surface

Dβ(Tαβhk
α) − jαJk

l∂αhl = 0 ,

Tαβ = JναJ β
ν − 1

4
gαβJµνJµν . (1)

Here Tαβ denotes the traceless canonical energy momentum tensor asso-
ciated with the Kähler action. An equivalent form for the first equation
is

TαβHk
αβ − jα(J β

α hk
β + Jk

l∂αhl) = 0 .

Hk
αβ = Dβ∂αhk . (2)
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Hk
αβ denotes the components of the second fundamental form and jα =

DβJαβ is the gauge current associated with the Kähler field.
On the boundaries of X4 the field equations are given by the expression

Tnβ∂βhk − Jnα(J β
α ∂βhk + Jk

l)∂αhk) = 0 . (3)

A general manner manner to solve the field equations on the boundaries
is to assume that the induced Kähler field associated with the boundaries
vanishes:

Jαβ(δ) = 0 . (4)

In this case the energy-momentum tensor vanishes identically on the bound-
ary component. On the outer boundaries of the 3-surface this solution ansatz
makes sense only provided the gauge fluxes and gravitational flux (defined by
Newtonian potential in the non-relativistic limit) associated with the matter
in the interior go somewhere. The only possibility seems to be that 3-surface
is topologically condensed on a larger 3-surface and feeds its gauge fluxes
to the larger 3-surface via # contacts ( topological sum). This assump-
tion forces the concept of topological condensate defined as a hierarchical
structure of 3-surfaces condensed on each other and thus giving rise to the
many-sheeted space-time.

An important thing to notice is that the boundary conditions do not force
the normal components of the gauge fields to zero even if the Kähler electric
field vanishes near the boundaries. This makes in principle possible gauge
charge renormalization classically resulting from the hierarchical structure
of the topological condensation.

2.4 Topologization and light-likeness of the Kähler current
as alternative manners to guarantee vanishing of Lorentz
4-force

The general solution of 4-dimensional Einstein-Yang Mills equations in Eu-
clidian 4-metric relies on self-duality of the gauge field, which topologizes
gauge charge. This topologization can be achieved by a weaker condition,
which can be regarded as a dynamical generalization of the Beltrami condi-
tion. An alternative manner to achieve vanishing of the Lorentz 4-force is
light-likeness of the Kähler 4-current. This does not require topologization.
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2.4.1 Topologization of the Kähler current for DCP2 = 3: covari-
ant formulation

The condition states that Kähler 4-current is proportional to the instan-
ton current whose divergence is instanton density and vanishes when the
dimension of CP2 projection is smaller than four: DCP2 < 4. For DCP2 = 2
the instanton 4-current vanishes identically and topologization is equivalent
with the vanishing of the Kähler current.

jα ≡ DβJαβ = ψ × jα
I = ψ × εαβγδJβγAδ . (5)

Here the function ψ is an arbitrary function ψ(sk) of CP2 coordinates sk re-
garded as functions of space-time coordinates. It is essential that ψ depends
on the space-time coordinates through the CP2 coordinates only. Hence the
representation as an imbedded gauge field is crucial element of the solution
ansatz.

The field equations state the vanishing of the divergence of the 4-current.
This is trivially true for instanton current for DCP2 < 4. Also the contraction
of ∇ψ (depending on space-time coordinates through CP2 coordinates only)
with the instanton current is proportional to the winding number density
and therefore vanishes for DCP2 < 4.

The topologization of the Kähler current guarantees the vanishing of
the Lorentz 4-force. Indeed, using the self-duality condition for the current,
the expression for the Lorentz 4-force reduces to a term proportional to the
instanton density:

jαJαβ = ψ × jα
I Jαβ

= ψ × εαµνδJµνAδJαβ . (6)

Since all vector quantities appearing in the contraction with the four-dimensional
permutation tensor are proportional to the gradients of CP2 coordinates, the
expression is proportional to the instanton density, and thus winding number
density, and vanishes for DCP2 < 4.

Remarkably, the topologization of the Kähler current guarantees also the
vanishing of the term jαJkl∂αsk in the field equations for CP2 coordinates.
This means that field equations reduce in both M4

+ and CP2 degrees of
freedom to

TαβHk
αβ = 0 . (7)
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These equations differ from the equations of minimal surface only by the
replacement of the metric tensor with energy momentum tensor. The ear-
lier proposal that quaternion conformal invariance in a suitable sense might
provide a general solution of the field equations could be seen as a general-
ization of the ordinary conformal invariance of string models. If the topol-
ogization of the Kähler current implying effective dimensional reduction in
CP2 degrees of freedom is consistent with quaternion conformal invariance,
the quaternion conformal structures must differ for the different dimensions
of CP2 projection.

2.4.2 Topologization of the Kähler current for DCP2 = 3: non-
covariant formulation

In order to gain a concrete understanding about what is involved it is useful
to repeat these arguments using the 3-dimensional notation. The compo-
nents of the instanton 4-current read in three-dimensional notation as

jI = E ×A + φB , ρI = B ·A . (8)

The self duality conditions for the current can be written explicitly using
3-dimensional notation and read

∇×B − ∂tE = j = ψjI = ψ
(
φB + E ×A

)
,

∇ · E = ρ = ψρI . (9)

For a vanishing electric field the self-duality condition for Kähler current
reduces to the Beltrami condition

∇×B = αB , α = ψφ . (10)

The vanishing of the divergence of the magnetic field implies that α is
constant along the field lines of the flow. When φ is constant and A is
time independent, the condition reduces to the Beltrami condition with
α = φ = constant, which allows an explicit solution [19].

One can check also the vanishing of the Lorentz 4-force by using 3-
dimensional notation. Lorentz 3-force can be written as

ρIE + j ×B = ψB ·AE + ψ
(
E ×A + φB

)
×B = 0 . (11)
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The fourth component of the Lorentz force reads as

j · E = ψB · E + ψ
(
E ×A + φB

)
· E = 0 . (12)

The remaining conditions come from the induction law of Faraday and could
be guaranteed by expressing E and B in terms of scalar and vector poten-
tials.

The density of the Kähler electric charge of the vacuum is proportional
to the the helicity density of the so called helicity charge ρ = ψρI = ψB ·A.
This charge is topological charge in the sense that it does not depend on
the induced metric at all. Note the presence of arbitrary function ψ of CP2

coordinates.
Further conditions on the functions appearing in the solution ansatz

come from the 3 independent field equations for CP2 coordinates. What is
remarkable that the generalized self-duality condition for the Kähler current
allows to understand the general features of the solution ansatz to very
high degree without any detailed knowledge about the detailed solution.
The question whether field equations allow solutions consistent with the self
duality conditions of the current will be dealt later. The optimistic guess is
that the field equations and topologization of the Kähler current relate to
each other very intimately.

2.4.3 Vanishing or light likeness of the Kähler current guarantees
vanishing of the Lorentz 4-force for DCP2 = 2

For DCP2 = 2 one can always take two CP2 coordinates as space-time co-
ordinates and from this it is clear that instanton current vanishes so that
topologization gives a vanishing Kähler current. In particular, the Beltrami
condition ∇ × B = αB is not consistent with the topologization of the
instanton current for DCP2 = 2.

DCP2 = 2 case can be treated in a coordinate invariant manner by using
the two coordinates of CP2 projection as space-time coordinates so that only
a magnetic or electric field is present depending on whether the gauge current
is time-like or space-like. Light-likeness of the gauge current provides a
second manner to achieve the vanishing of the Lorentz force and is realized in
case of massless extremals having DCP2 = 2: this current is in the direction
of propagation whereas magnetic and electric fields are orthogonal to it so
that Beltrami conditions is certainly not satisfied.
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2.4.4 Under what conditions topologization of Kähler current
yields Beltrami conditions?

Topologization of the Kähler 4-current gives rise to magnetic Beltrami fields
if either of the following conditions is satisfied.

a) The E × A term contributing besides φB term to the topological
current vanishes. This requires that E and A are parallel to each other

E = ∇Φ− ∂tA = βA (13)

This condition is analogous to the Beltrami condition. Now only the 3-space
has as its coordinates time coordinate and two spatial coordinates and and
B is replaced with A. Since E and B are orthogonal, this condition implies
B ·A = 0 so that Kähler charge density is vanishing.

b) The vector E ×A is parallel to B.

E ×A = βB (14)

The condition is consistent with the orthogonality of E and B but implies
the orthogonality of A and B so that electric charge density vanishes

In both cases vector potential fails to define a contact structure since B·A
vanishes (contact structures are discussed briefly below), and there exists a
global coordinate along the field lines of A and the full contact structure
is lost again. Note however that the Beltrami condition for magnetic field
means that magnetic field defines a contact structure irrespective of whether
B ·A vanishes or not. The transition from the general case to Beltrami field
would thus involve the replacement

(A, B) →∇× (B, j)

induced by the rotor.
One must of course take these considerations somewhat cautiously since

the inner product depends on the induced 4-metric and it might be that
induced metric could allow small vacuum charge density and make possible
genuine contact structure.

2.4.5 Hydrodynamic analogy

The field equations of TGD are basically hydrodynamic equations stating
the local conservation of the currents associated with the isometries of the
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imbedding space. Therefore it is intriguing that Beltrami fields appear also
as solutions of ideal magnetohydrodynamics equations and as steady solu-
tions of non-viscous incompressible flow described by Euler equations [20].

In hydrodynamics the role of the magnetic field is taken by the velocity
field. TGD based models for nuclei [F6] and condensed matter [F9] involve in
an essential manner valence quarks having large h̄ and exotic quarks giving
nucleons anomalous color and weak charges creating long ranged color and
weak forces. Weak forces have a range of order atomic radius and could be
responsible for the repulsive core in van der Waals potential.

This raises the idea that the incompressible flow could occur along the
field lines of the Z0 magnetic field so that the velocity field would be propor-
tional to the Z0 magnetic field and the Beltrami condition for the velocity
field would reduce to that for Z0 magnetic field. Thus the flow lines of hy-
drodynamic flow would directly correspond to those of Z0 magnetic field.
The generalized Beltrami flow based on the topologization of the Z0 current
would allow to model also the non-stationary incompressible non-viscous
hydrodynamical flows.

It would seem that one cannot describe viscous flows using flows sat-
isfying generalized Beltrami conditions since the vanishing of the Lorentz
4-force says that there is no local dissipation of the classical field energy.
One might claim that this is not a problem since in TGD framework viscous
flow could be seen as a practical description of a quantum jump sequence
by replacing the corresponding sequence of space-time surfaces with a single
space-time surface.

One the other hand, quantum classical correspondence requires that also
dissipative effects have space-time correlates. Kähler fields, which are dis-
sipative, and thus correspond to a non-vanishing Lorentz 4-force, represent
one candidate for correlates of this kind. If this is the case, then the fields
satisfying the generalized Beltrami condition provide space-time correlates
only for the asymptotic self organization patterns for which the viscous ef-
fects are negligible, and also the solutions of field equations describing effects
of viscosity should be possible.

One must however take this argument with a grain of salt. Dissipation,
that is the transfer of conserved quantities to degrees of freedom corre-
sponding to shorter scales, could correspond to a transfer of these quantities
between different space-time sheets of the many-sheeted space-time. Here
the opponent could however argue that larger space-time sheets mimic the
dissipative dynamics in shorter scales and that classical currents represent
”symbolically” averaged currents in shorter length scales, and that the local
non-conservation of energy momentum tensor consistent with local conserva-
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tion of isometry currents provides a unique manner to mimic the dissipative
dynamics. This view will be developed in more detail below.

2.4.6 The stability of generalized Beltrami fields

The stability of generalized Beltrami fields is of high interest since unstable
points of space-time sheets are those around which macroscopic changes
induced by quantum jumps are expected to be localized.

1. Contact forms and contact structures

The stability of Beltrami flows has been studied using the theory of
contact forms in three-dimensional Riemann manifolds [21]. Contact form is
a one-form A (that is covariant vector field Aα) with the property A∧dA 6= 0.
In the recent case the induced Kähler gauge potential Aα and corresponding
induced Kähler form Jαβ for any 3-sub-manifold of space-time surface define
a contact form so that the vector field Aα = gαβAβ is not orthogonal with
the magnetic field Bα = εαβδJβγ . This requires that magnetic field has a
helical structure. Induced metric in turn defines the Riemann structure.

If the vector potential defines a contact form, the charge density associ-
ated with the topologized Kähler current must be non-vanishing. This can
be seen as follows.

a) The requirement that the flow lines of a one-form Xµ defined by the
vector field Xµ as its dual allows to define a global coordinate x varying
along the flow lines implies that there is an integrating factor φ such that
φX = dx and therefore d(φX) = 0. This implies dlog(φ) ∧ X = −dX.
From this the necessary condition for the existence of the coordinate x is
X ∧ dX = 0. In the three-dimensional case this gives X · (∇×X) = 0.

b) This condition is by definition not satisfied by the vector potential
defining a contact form so that one cannot identify a global coordinate vary-
ing along the flow lines of the vector potential. The condition B · A 6= 0
states that the charge density for the topologized Kähler current is non-
vanishing. The condition that the field lines of the magnetic field allow a
global coordinate requires B · ∇ × B = 0. The condition is not satisfied by
Beltrami fields with α 6= 0. Note that in this case magnetic field defines a
contact structure.

Contact structure requires the existence of a vector ξ satisfying the con-
dition A(ξ) = 0. The vector field ξ defines a plane field, which is orthogonal
to the vector field Aα. Reeb field in turn is a vector field for which A(X) = 1
and dA(X; ) = 0 hold true. The latter condition states the vanishing of the
cross product X × B so that X is parallel to the Kähler magnetic field Bα
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and has unit projection in the direction of the vector field Aα. Any Beltrami
field defines a Reeb field irrespective of the Riemannian structure.

2. Stability of the Beltrami flow and contact structures

Contact structures are used in the study of the topology and stability
of the hydrodynamical flows [21], and one might expect that the notion
of contact structure and its proper generalization to the four-dimensional
context could be useful in TGD framework also. An example giving some
idea about the complexity of the flows defined by Beltrami fields is the
Beltrami field in R3 possessing closed orbits with all possible knot and link
types simultaneously [21]!

Beltrami flows associated with Euler equations are known to be unsta-
ble [21]. Since the flow is volume preserving, the stationary points of the
Beltrami flow are saddle points at which also vorticity vanishes and linear in-
stabilities of Navier-Stokes equations can develop. From the point of view of
biology it is interesting that the flow is stabilized by vorticity which implies
also helical structures. The stationary points of the Beltrami flow corre-
spond in TGD framework to points at which the induced Kähler magnetic
field vanishes. They can be unstable by the vacuum degeneracy of Kähler
action implying classical non-determinism. For generalized Beltrami fields
velocity and vorticity (both divergence free) are replaced by Kähler current
and instanton current.

More generally, the points at which the Kähler 4-current vanishes are
expected to represent potential instabilities. The instanton current is linear
in Kähler field and can vanish in a gauge invariant manner only if the induced
Kähler field vanishes so that the instability would be due to the vacuum
degeneracy also now. Note that the vanishing of the Kähler current allows
also the generation of region with DCP2 = 4. The instability of the points at
which induce Kähler field vanish is manifested in quantum jumps replacing
the generalized Beltrami field with a new one such that something new is
generated around unstable points. Thus the regions in which induced Kähler
field becomes weak are the most interesting ones. For example, unwinding
of DNA could be initiated by an instability of this kind.

2.5 How to satisfy field equations?

The topologization of the Kähler current guarantees also the vanishing of
the term jαJkl∂αsk in the field equations for CP2 coordinates. This means
that field equations reduce in both M4

+ and CP2 degrees of freedom to
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TαβHk
αβ = 0 . (15)

These equations differ from the equations of minimal surface only by the
replacement of the metric tensor with energy momentum tensor. The ear-
lier proposal that quaternion conformal invariance in a suitable sense might
provide a general solution of the field equations could be seen as a general-
ization of the ordinary conformal invariance of string models. If the topol-
ogization of the Kähler current implying effective dimensional reduction in
CP2 degrees of freedom is consistent with quaternion conformal invariance,
the quaternion conformal structures must differ for the different dimensions
of CP2 projection. In the following somewhat different approach is however
considered utilizing the properties of Hamilton Jacobi structures of M4

+ in-
troduced in the study of massless extremals and contact structures of CP2

emerging naturally in the case of generalized Beltrami fields.

2.5.1 String model as a starting point

String model serves as a starting point.
a) In the case of Minkowskian minimal surfaces representing string orbit

the field equations reduce to purely algebraic conditions in light cone coor-
dinates (u, v) since the induced metric has only the component guv, whereas
the second fundamental form has only diagonal components Hk

uu and Hk
vv.

b) For Euclidian minimal surfaces (u, v) is replaced by complex coordi-
nates (w, w) and field equations are satisfied because the metric has only
the component gww and second fundamental form has only components of
type Hk

ww and Hk
ww. The mechanism should generalize to the recent case.

2.5.2 The general form of energy momentum tensor as a guide-
line for the choice of coordinates

Any 3-dimensional Riemann manifold allows always a orthogonal coordinate
system for which the metric is diagonal. Any 4-dimensional Riemann man-
ifold in turn allows a coordinate system for which 3-metric is diagonal and
the only non-diagonal components of the metric are of form gti. This kind
of coordinates might be natural also now. When E and B are orthogonal,
energy momentum tensor has the form
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T =




E2+B2

2 0 0 EB

0 E2+B2

2 0 0
0 0 −E2+B2

2 0
EB 0 0 E2−B2

2




(16)

in the tangent space basis defined by time direction and longitudinal direc-
tion E ×B, and transversal directions E and B. Note that T is traceless.

The optimistic guess would be that the directions defined by these vectors
integrate to three orthogonal coordinates of X4 and together with time
coordinate define a coordinate system containing only gti as non-diagonal
components of the metric. This however requires that the fields in question
allow an integrating factor and, as already found, this requires ∇×X ·X = 0
and this is not the case in general.

Physical intuition suggests however that X4 coordinates allow a decom-
position into longitudinal and transversal degrees freedom. This would mean
the existence of a time coordinate t and longitudinal coordinate z the plane
defined by time coordinate and vector E × B such that the coordinates
u = t− z and v = t + z are light like coordinates so that the induced metric
would have only the component guv whereas gvv and guu would vanish in
these coordinates. In the transversal space-time directions complex space-
time coordinate coordinate w could be introduced. Metric could have also
non-diagonal components besides the components gww and guv.

2.5.3 Hamilton Jacobi structures in M4
+

Hamilton Jacobi structure in M4
+ can understood as a generalized complex

structure combing transversal complex structure and longitudinal hyper-
complex structure so that notion of holomorphy and Kähler structure gen-
eralize.

a) Denote by mi the linear Minkowski coordinates of M4. Let (S+, S−, E1, E2)
denote local coordinates of M4

+ defining a local decomposition of the tangent
space M4 of M4

+ into a direct, not necessarily orthogonal, sum M4 = M2⊕
E2 of spaces M2 and E2. This decomposition has an interpretation in terms
of the longitudinal and transversal degrees of freedom defined by local light-
like four-velocities v± = ∇S± and polarization vectors εi = ∇Ei assignable
to light ray. Assume that E2 allows complex coordinates w = E1 + iE2 and
w = E1 − iE2. The simplest decomposition of this kind corresponds to the
decomposition (S+ ≡ u = t + z, S− ≡ v = t− z, w = x + iy, w = x− iy).
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b) In accordance with this physical picture, S+ and S− define light-like
curves which are normals to light-like surfaces and thus satisfy the equation:

(∇S±)2 = 0 .

The gradients of S± are obviously analogous to local light like velocity vec-
tors v = (1, v) and ṽ = (1,−v). These equations are also obtained in
geometric optics from Hamilton Jacobi equation by replacing photon’s four-
velocity with the gradient ∇S: this is consistent with the interpretation of
massless extremals as Bohr orbits of em field. S± = constant surfaces can be
interpreted as expanding light fronts. The interpretation of S± as Hamilton
Jacobi functions justifies the term Hamilton Jacobi structure.

The simplest surfaces of this kind correspond to t = z and t = −z light
fronts which are planes. They are dual to each other by hyper complex
conjugation u = t − z → v = t + z. One should somehow generalize this
conjugation operation. The simplest candidate for the conjugation S+ → S−

is as a conjugation induced by the conjugation for the arguments: S+(t −
z, t + z, x, y) → S−(t− z, t + z, x, y) = S+(t + z, t− z, x,−y) so that a dual
pair is mapped to a dual pair. In transversal degrees of freedom complex
conjugation would be involved.

c) The coordinates (S±, w, w) define local light cone coordinates with
the line element having the form

ds2 = g+−dS+dS− + gwwdwdw

+ g+wdS+dw + g+wdS+dw

+ g−wdS−dw + g−wdS−dw . (17)

Conformal transformations of M4
+ leave the general form of this decompo-

sition invariant. Also the transformations which reduces to analytic trans-
formations w → f(w) in transversal degrees of freedom and hyper-analytic
transformations S+ → f(S+), S− → f(S−) in longitudinal degrees of free-
dom preserve this structure.

d) The basic idea is that of generalized Kähler structure meaning that the
notion of Kähler function generalizes so that the non-vanishing components
of metric are expressible as

gww = ∂w∂wK , g+− = ∂S+∂S−K ,

gw± = ∂w∂S±K , gw± = ∂w∂S±K .
(18)
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for the components of the metric. The expression in terms of Kähler function
is coordinate invariant for the same reason as in case of ordinary Kähler
metric. In the standard lightcone coordinates the Kähler function is given
by

K = w0w0 + uv , w0 = x + iy , u = t− z , v = t + z . (19)

The Christoffel symbols satisfy the conditions

{ k
w w} = 0 , { k

+−} = 0 . (20)

If energy momentum tensor has only the components Tww and T+−, field
equations are satisfied in M4

+ degrees of freedom.
e) The Hamilton Jacobi structures related by these transformations can

be regarded as being equivalent. Since light-like 3- surface is, as the dy-
namical evolution defined by the light front, fixed by the 2-surface serving
as the light source, these structures should be in one-one correspondence
with 2-dimensional surfaces with two surfaces regarded as equivalent if they
correspond to different time=constant snapshots of the same light front, or
are related by a conformal transformation of M4

+. Obviously there should
be quite large number of them. Note that the generating two-dimensional
surfaces relate also naturally to quaternion conformal invariance and cor-
responding Kac Moody invariance for which deformations defined by the
M4 coordinates as functions of the light-cone coordinates of the light front
evolution define Kac Moody algebra, which thus seems to appear naturally
also at the level of solutions of field equations.

The task is to find all possible local light cone coordinates defining one-
parameter families 2-surfaces defined by the condition Si = constant, i =
+ or = −, dual to each other and expanding with light velocity. The
basic open questions are whether the generalized Kähler function indeed
makes sense and whether the physical intuition about 2-surfaces as light
sources parameterizing the set of all possible Hamilton Jacobi structures
makes sense.

2.5.4 Contact structure and generalized Kähler structure of CP2

projection

In the case of 3-dimensional CP2 projection it is assumed that one can
introduce complex coordinates (ξ, ξ) and the third coordinate s. These co-
ordinates would correspond to a contact structure in 3-dimensional CP2
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projection defining transversal symplectic and Kähler structures. In these
coordinates the transversal parts of the induced CP2 Kähler form and met-
ric would contain only components of type gww and Jww. The transversal
Kähler field Jww would induce the Kähler magnetic field and the components
Jsw and Jsw the Kähler electric field.

It must be emphasized that the non-integrability of the contact structure
implies that J cannot be parallel to the tangent planes of s = constant
surfaces, s cannot be parallel to neither A nor the dual of J , and ξ cannot
vary in the tangent plane defined by J . A further important conclusion is
that for the solutions with 3-dimensional CP2 projection topologized Kähler
charge density is necessarily non-vanishing by A ∧ J 6= 0 whereas for the
solutions with DCP2 = 2 topologized Kähler current vanishes.

b) Also the CP2 projection is assumed to possess a generalized Kähler
structure in the sense that all components of the metric except sss are deriv-
able from a Kähler function by formulas similar to M4

+ case.

sww = ∂w∂wK , sws = ∂w∂sK , sws = ∂w∂sK . (21)

Generalized Kähler property guarantees that the vanishing of the Christoffel
symbols of CP2 (rather than those of 3-dimensional projection), which are
of type { k

ξ ξ
}.

{ k
ξ ξ
} = 0 . (22)

Here the coordinates of CP2 have been chosen in such a manner that three
of them correspond to the coordinates of the projection and fourth coordi-
nate is constant at the projection. The upper index k refers also to the CP2

coordinate, which is constant for the CP2 projection. If energy momentum
tensor has only components of type T+− and Tww, field equations are satis-
fied even when if non-diagonal Christoffel symbols of CP2 are present. The
challenge is to discover solution ansatz, which guarantees this property of
the energy momentum tensor.

A stronger variant of Kähler property would be that also sss vanishes
so that the coordinate lines defined by s would define light like curves in
CP2. The topologization of the Kähler current however implies that CP2

projection is a projection of a 3-surface with strong Kähler property. Using
(s, ξ, ξ, S−) as coordinates for the space-time surface defined by the ansatz
(w = w(ξ, s), S+ = S+(s)) one finds that gss must be vanishing so that
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stronger variant of the Kähler property holds true for S− = constant 3-
surfaces.

The topologization condition for the Kähler current can be solved com-
pletely generally in terms of the induced metric using (ξ, ξ, s) and some co-
ordinate of M4

+, call it x4, as space-time coordinates. Topologization boils
down to the conditions

∂β(Jαβ√g) = 0 for α ∈ {ξ, ξ, s} ,

g4i 6= 0 . (23)

Thus 3-dimensional empty space Maxwell equations and the non-orthogonality
of X4 coordinate lines and the 3-surfaces defined by the lift of the CP2 pro-
jection.

2.5.5 A solution ansatz yielding light-like current in DCP2 = 3
case

The basic idea is that of generalized Kähler structure and solutions of field
equations as maps or deformations of canonically imbedded M4

+ respecting
this structure and guaranteing that the only non-vanishing components of
the energy momentum tensor are T ξξ and T s− in the coordinates (ξ, ξ, s, S−).

a) The coordinates (w,S+) are assumed to holomorphic functions of the
CP2 coordinates (s, ξ)

S+ = S+(s) , w = w(ξ, s) . (24)

Obviously S+ could be replaced with S−. The ansatz is completely sym-
metric with respect to the exchange of the roles of (s, w) and (S+, ξ) since
it maps longitudinal degrees of freedom to longitudinal ones and transverse
degrees of freedom to transverse ones.

b) Field equations are satisfied if the only non-vanishing components of
the energy momentum tensor are of type T ξξ and T s−. The reason is that
the CP2 Christoffel symbols for projection and projections of M4

+ Christoffel
symbols are vanishing for these lower index pairs.

c) By a straightforward calculation one can verify that the only manner
to achieve the required structure of energy momentum tensor is to assume
that the induced metric in the coordinates (ξ, ξ, s, S−) has as non-vanishing
components only gξξ and gs−
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gss = 0 , gξs = 0 , gξs = 0 . (25)

Obviously the space-time surface must factorize into an orthogonal product
of longitudinal and transversal spaces.

d) The condition guaranteing the product structure of the metric is

sss = m+w∂sw(ξ, s)∂sS
+(s) + m+w∂sw(ξ, s)∂sS

+(s) ,
ssξ = m+w∂ξw(ξ)∂sS

+(s) ,
ssξ = m+w∂ξw(ξ)∂sS

+(s) .
(26)

Thus the function of dynamics is to diagonalize the metric and provide it
with strong Kähler property. Obviously the CP2 projection corresponds to a
light-like surface for all values of S− so that space-time surface is foliated by
light-like surfaces and the notion of generalized conformal invariance makes
sense for the entire space-time surface rather than only for its boundary or
elementary particle horizons.

e) The requirement that the Kähler current is proportional to the in-
stanton current means that only the j− component of the current is non-
vanishing. This gives the following conditions

jξ√g = ∂β(Jξβ√g) = 0 , jξ√g = ∂β(Jξβ√g) = 0 ,

j+√g = ∂β(J+β√g) = 0 .

(27)

Since J+β vanishes, the condition

√
gj+ = ∂β(J+β√g) = 0 (28)

is identically satisfied. Therefore the number of field equations reduces to
three.

The physical interpretation of the solution ansatz deserves some com-
ments.

a) The light-like character of the Kähler current brings in mind CP2

extremals for which CP2 projection is light like. This suggests that the
topological condensation of CP2 type extremal occurs on DCP2 = 3 helical
space-time sheet representing zitterbewegung. In the case of many-body
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system light-likeness of the current does not require that particles are mass-
less if particles of opposite charges can be present. Field tensor has the
form (Jξξ, Jξ−, Jξ−). Both helical magnetic field and electric field present
as is clear when one replaces the coordinates (S+, S−) with time-like and
space-like coordinate. Magnetic field dominates but the presence of electric
field means that genuine Beltrami field is not in question.

b) Since the induced metric is product metric, 3-surface is metrically
product of 2-dimensional surface X2 and line or circle and obeys product
topology. If absolute minima correspond to asymptotic self-organization
patterns, the appearance of the product topology and even metric is not
so surprising. Thus the solutions can be classified by the genus of X2. An
interesting question is how closely the explanation of family replication phe-
nomenon in terms of the topology of the boundary component of elementary
particle like 3-surface relates to this. The heaviness and instability of parti-
cles which correspond to genera g > 2 (sphere with more than two handles)
might have simple explanation as absence of (stable) DCP2 = 3 solutions of
field equations with genus g > 2.

c) The solution ansatz need not be the most general. Kähler current is
light-like and already this is enough to reduce the field equations to the form
involving only energy momentum tensor. One might hope of finding also
solution ansätze for which Kähler current is time-like or space-like. Space-
likeness of the Kähler current might be achieved if the complex coordinates
(ξ, ξ) and hyper-complex coordinates (S+, S−) change the role. For this
solution ansatz electric field would dominate. Note that the possibility that
Kähler current is always light-like cannot be excluded.

d) Suppose that CP2 projection quite generally defines a foliation of the
space-time surface by light-like 3-surfaces, as is suggested by the conformal
invariance. If the induced metric has Minkowskian signature, the fourth
coordinate x4 and thus also Kähler current must be time-like or light-like
so that magnetic field dominates. Already the requirement that the metric
is non-degenerate implies gs4 6= 0 so that the metric for the ξ = constant 2-
surfaces has a Minkowskian signature. Thus space-like Kähler current does
not allow the lift of the CP2 projection to be light-like.

2.5.6 Are solutions with time-like or space-like Kähler current
possible in DCP2 = 3 case?

The following ansatz gives good hopes for obtaining solutions with space-like
and time-like Kähler currents.

a) Assign to light-like coordinates coordinates (T, Z) by the formula
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T = S+ + S− and Z = S+ − S−. Space-time coordinates are taken to be
(ξ, ξ, s) and coordinate Z. The solution ansatz with time-like Kähler current
results when the roles of T and Z are changed. It will however found that
same solution ansatz can give rise to both space-like and time-like Kähler
current.

b) The solution ansatz giving rise to a space-like Kähler current is defined
by the equations

T = T (Z, s) , w = w(ξ, s) . (29)

If T depends strongly on Z, the gZZ component of the induced metric be-
comes positive and Kähler current time-like.

c) The components of the induced metric are

gZZ = mZZ + mTT ∂ZT∂sT , gZs = mTT ∂ZT∂sT ,

gss = sss + mTT ∂sT∂sT , gww = sww + mww∂ξw∂ξw ,

gsξ = ssξ , gsξ = ssξ .

(30)

Topologized Kähler current has only Z-component and 3-dimensional empty
space Maxwell’s equations guarantee the topologization.

In CP2 degrees of freedom the contractions of the energy momentum
tensor with Christoffel symbols vanish if T ss, T ξs and T ξξ vanish as required
by internal consistency. This is guaranteed if the condition

Jξs = 0 (31)

holds true. Note however that JξZ is non-vanishing. Therefore only the com-
ponents T ξξ and TZξ, TZξ of energy momentum tensor are non-vanishing,
and field equations reduce to the conditions

∂ξ(J
ξξ√g) + ∂Z(JξZ√g) = 0 ,

∂ξ(Jξξ√g) + ∂Z(JξZ√g) = 0 . (32)

In the special case that the induce metric does not depend on z-coordinate
equations reduce to holomorphicity conditions. This is achieve if T depends
linearly on Z: T = aZ.
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The contractions with M4
+ Christoffel symbols come from the non-vanishing

of TZξ and vanish if the Hamilton Jacobi structure satisfies the conditions

{ k
T w} = 0 , { k

T w} = 0 ,

{ k
Z w} = 0 , { k

Z w} = 0
(33)

hold true. The conditions are equivalent with the conditions

{ k± w} = 0 , { k
± w} = 0 . (34)

These conditions possess solutions (standard light cone coordinates are the
simplest example). Also the second derivatives of T (s, Z) contribute to
the second fundamental form but they do not give rise to non-vanishing
contractions with the energy momentum tensor. The cautious conclusion is
that also solutions with time-like or space-like Kähler current are possible.

2.5.7 DCP2 = 4 case

The preceding discussion was for DCP2 = 3 and one should generalize the
discussion to DCP2 = 4 case.

a) Hamilton Jacobi structure for M4
+ is expected to be crucial also now.

b) One might hope that for D = 4 the Kähler structure of CP2 defines
a foliation of CP2 by 3-dimensional contact structures. This requires that
there is a coordinate varying along the field lines of the normal vector field
X defined as the dual of the three-form A ∧ dA = A ∧ J . By the previous
considerations the condition for this reads as dX = d(logφ)∧X and implies
X ∧dX = 0. Using the self duality of the Kähler form one can express X as
Xk = JklAl. By a brief calculation one finds that X ∧ dX ∝ X holds true
so that (somewhat disappointingly) a foliation of CP2 by contact structures
does not exist.

For DCP2 = 4 case Kähler current vanishes and this case corresponds
to what I have called earlier Maxwellian phase since empty space Maxwell’s
equations are indeed satisfied.

1. Solution ansatz with a 3-dimensional M4
+ projection

The basic idea is that the complex structure of CP2 is preserved so that
one can use complex coordinates (ξ1, ξ2) for CP2 in which CP2 Christof-
fel symbols and energy momentum tensor have automatically the desired

32



properties. This is achieved the second light like coordinate, say v, is non-
dynamical so that the induced metric does not receive any contribution from
the longitudinal degrees of freedom. In this case one has

S+ = S+(ξ1, ξ2) , w = w(ξ1, ξ2) , S− = constant . (35)

The induced metric does possesses only components of type gij if the con-
ditions

g+w = 0 , g+w = 0 . (36)

This guarantees that energy momentum tensor has only components of
type T ij in coordinates (ξ1, ξ2) and their contractions with the Christoffel
symbols of CP2 vanish identically. In M4

+ degrees of freedom one must pose
the conditions

{ k
w+} = 0 , { k

w+} = 0 , { k
++} = 0 . (37)

on Christoffel symbols. These conditions are satisfied if the the M4
+ metric

does not depend on S+:

∂+mkl = 0 . (38)

This means that m−w and m−w can be non-vanishing but like m+− they
cannot depend on S+.

The second derivatives of S+ appearing in the second fundamental form
are also a source of trouble unless they vanish. Hence S+ must be a linear
function of the coordinates ξk:

S+ = akξ
k + akξ

k
. (39)

Field equations are the counterparts of empty space Maxwell equations
jα = 0 but with M4

+ coordinates (u,w) appearing as dynamical variables
and entering only through the induced metric. By holomorphy the field
equations can be written as

∂j(J ji√g) = 0 , ∂j(J
ji√g) = 0 , (40)
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and can be interpreted as conditions stating the holomorphy of the con-
travariant Kähler form.

What is remarkable is that the M4
+ projection of the solution is 3-

dimensional light like surface and that the induced metric has Euclidian
signature. Light front would become a concrete geometric object with one
compactified dimension rather than being a mere conceptualization. One
could see this as topological quantization for the notion of light front or of
electromagnetic shock wave, or perhaps even as the realization of the particle
aspect of gauge fields at classical level.

If the latter interpretation is correct, quantum classical correspondence
would be realized very concretely. Wave and particle aspects would both
be present. One could understand the interactions of charged particles with
electromagnetic fields both in terms of absorption and emission of topological
field quanta and in terms of the interaction with a classical field as particle
topologically condenses at the photonic light front.

For CP2 type extremals for which M4
+ projection is a light like curve

correspond to a special case of this solution ansatz: transversal M4
+ coor-

dinates are constant and S+ is now arbitrary function of CP2 coordinates.
This is possible since M4

+ projection is 1-dimensional.

2. Are solutions with a 4-dimensional M4
+ projection possible?

The most natural solution ansatz is the one for which CP2 complex
structure is preserved so that energy momentum tensor has desired prop-
erties. For four-dimensional M4

+ projection this ansatz does not seem to
make promising since the contribution of the longitudinal degrees of free-
dom implies that the induced metric is not anymore of desired form since the
components gij = m+−(∂ξiS+∂ξjS− + m+−∂ξiS−∂ξjS+) are non-vanishing.

a) The natural dynamical variables are still Minkowski coordinates (w,w, S+, S−)
for some Hamilton Jacobi structure. Since the complex structure of CP2

must be given up, CP2 coordinates can be written as (ξ, s, r) to stress the
fact that only ”one half” of the Kähler structure of CP2 is respected by the
solution ansatz.

b) The solution ansatz has the same general form as in D = 3 case and
must be symmetric with respect to the exchange of M4

+ and CP2 coordinates.
Transverse coordinates are mapped to transverse ones and longitudinal co-
ordinates to longitudinal ones:

(S+, S−) = (S+(s, r), S−(s, r)) , w = w(ξ) . (41)

This ansatz would describe ordinary Maxwell field in M4
+ since the roles of
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M4
+ coordinates and CP2 coordinates are interchangeable.
It is however far from obvious whether there are any solutions with a 4-

dimensional M4
+ projection. That empty space Maxwell’s equations would

allow only the topologically quantized light fronts as its solutions would
realize quantum classical correspondence very concretely.

2.5.8 DCP2 = 2 case

Hamilton Jacobi structure for M4
+ is assumed also for DCP2 = 2, whereas the

contact structure for CP2 is in D = 2 case replaced by the induced Kähler
structure. Topologization yields vanishing Kähler current. Light-likeness
provides a second manner to achieve vanishing Lorentz force but one cannot
exclude the possibility of time- and space-like Kähler current.

1. Solutions with vanishing Kähler current

a) String like objects, which are products X2 × Y 2 ⊂ M4
+ × CP2 of

minimal surfaces Y 2 of M4
+ with geodesic spheres S2 of CP2 and carry van-

ishing gauge current. String like objects allow considerable generalization
from simple Cartesian products of X2 × Y 2 ⊂ M4 × S2. Let (w,w, S+, S−)
define the Hamilton Jacobi structure for M4

+. w = constant surfaces de-
fine minimal surfaces X2 of M4

+. Let ξ denote complex coordinate for
a sub-manifold of CP2 such that the imbedding to CP2 is holomorphic:
(ξ1, ξ2) = (f1(ξ), f2(ξ)). The resulting surface Y 2 ⊂ CP2 is a minimal
surface and field equations reduce to the requirement that the Kähler cur-
rent vanishes: ∂ξ(J

ξξ√g2) = 0. One-dimensional strings are deformed to
3-dimensional cylinders representing magnetic flux tubes. The oscillations
of string correspond to waves moving along string with light velocity, and
for more general solutions they become TGD counterparts of Alfwen waves
associated with magnetic flux tubes regarded as oscillations of magnetic flux
lines behaving effectively like strings. It must be emphasized that Alfwen
waves are a phenomenological notion not really justified by the properties
of Maxwell’s equations.

b) Also electret type solutions with the role of the magnetic field taken
by the electric field are possible. (ξ, ξ, u, v) would provide the natural coor-
dinates and the solution ansatz would be of the form

(s, r) = (s(u, v), r(u, v)) , ξ = constant , (42)

and corresponds to a vanishing Kähler current.
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c) Both magnetic and electric fields are necessarily present only for the
solutions carrying non-vanishing electric charge density (proportional to B ·
A). Thus one can ask whether more general solutions carrying both magnetic
and electric field are possible. As a matter fact, one must first answer the
question what one really means with the magnetic field. By choosing the
coordinates of 2-dimensional CP2 projection as space-time coordinates one
can define what one means with magnetic and electric field in a coordinate
invariant manner. Since the CP2 Kähler form for the CP2 projection with
DCP2 = 2 can be regarded as a pure Kähler magnetic field, the induced
Kähler field is either magnetic field or electric field.

The form of the ansatz would be

(s, r) = (s, r) (u, v, w,w) , ξ = constant . (43)

As a matter fact, CP2 coordinates depend on two properly chosen M4 co-
ordinates only.

1. Solutions with light-like Kähler current

There are large classes of solutions of field equations with a light-like
Kähler current and 2-dimensional CP2 projection.

a) Massless extremals for which CP2 coordinates are arbitrary functions
of one transversal coordinate e = f(w,w) defining local polarization direc-
tion and light like coordinate u of M4

+ and carrying in the general case a
light like current. In this case the holomorphy does not play any role.

b) The string like solutions thickened to magnetic flux tubes carrying
TGD counterparts of Alfwen waves generalize to solutions allowing also
light-like Kähler current. Also now Kähler metric is allowed to develop
a component between longitudinal and transversal degrees of freedom so
that Kähler current develops a light-like component. The ansatz is of the
form

ξi = f i(ξ) , w = w(ξ) , S− = s− , S+ = s+ + f(ξ, ξ) .

Only the components g+ξ and g+ξ of the induced metric receive contribu-
tions from the modification of the solution ansatz. The contravariant metric
receives contributions to g−ξ and g−ξ whereas g+ξ and g+ξ remain zero.
Since the partial derivatives ∂ξ∂+hk and ∂ξ∂+hk and corresponding pro-
jections of Christoffel symbols vanish, field equations are satisfied. Kähler
current develops a non-vanishing component j−. Apart from the presence
of the electric field, these solutions are highly analogous to Beltrami fields.
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3. Do scalar wave pulses represent a solution type with non-vanishing
but not light-like Kähler current?

Since longitudinal polarizations are possible only for off mass shell vir-
tual photons, physical intuition suggests that scalar wave pulse solutions
describing the propagation of longitudinal electric field with light velocity
cannot appear as asymptotic field patterns. This is also consistent with the
claim that scalar wave pulses are associated with the transients involved
with sudden switching of electric voltage on or off. Let M4 = M2 ⊕ E2

be the standard decomposition of M4 to flat longitudinal and transversal
spaces, and S2 a homologically non-trivial geodesic sphere of CP2. The sim-
plest solution ansatz corresponds to a surface X2×Y 2, X2 ⊂ E2, such that
Y 2 is a surface defined by a map S2 → M2 (or vice versa).

Energy momentum tensor is in both longitudinal and transversal degrees
of freedom proportional to the corresponding part of the induced metric.
Field equations are trivially true in the transversal degrees of freedom. The
calculation of the divergence of energy momentum tensor demonstrates that
Kähler current can be regarded as a vector field

jα =
1
4
Jαβ∂βL

defined by the Kähler action density acting as Hamiltonian. Poisson bracket
is defined by the pseudo-symplectic form associated with the induced Kähler
form with respect to the induced metric rather that that of S2 (using S2-
coordinates as coordinates for Y 2, the square of this pseudo-symplectic form
is equal to metric multiplied by the ratio det(g(Y 2))/det(g(S2))).

In longitudinal degrees of freedom field equations are minimal surface
equations with a source term proportional to the Kähler current divided by
the Kähler action density. The vanishing of the Kähler current is possible
only if Kähler action density is constant. This condition is true in the ap-
proximation that the induced metric for Y 2 is flat, that is at the limit when
M4 projection has size larger than size of CP2 projection and that induced
metric has Minkowskian signature). It is not clear whether the minimal sur-
face property of Y 2 in M2×S2 is consistent with the constancy of the Kähler
action density. This would suggest that classical gravitational interactions
eliminate scalar wave pulses as asymptotic field patterns and cause the devi-
ation from the minimal surface property and the non-vanishing of the Kähler
current. The fact that solution becomes ”instanton” like Euclidian solution
when S+ and S− become constant suggests that the M4 projection of the
solution quite generally has a finite extension in time direction.
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2.5.9 Could DCP2 = 2 → 3 transition occur in rotating magnetic
systems?

I have studied the imbeddings of simple cylindrical and helical magnetic
fields in various applications of TGD to condensed matter systems, in partic-
ular in attempts to understand the strange findings about rotating magnetic
systems [G2].

Let S2 be the homologically non-trivial geodesic sphere of CP2 with
standard spherical coordinates (U ≡ cos(θ), Φ) and let (t, ρ, φ, z) denote
cylindrical coordinates for a cylindrical space-time sheet. The simplest pos-
sible space-time surfaces X4 ⊂ M4

+ × S2 carrying helical Kähler magnetic
field depending on the radial cylindrical coordinate ρ, are given by:

U = U(ρ) , Φ = nφ + kz ,
Jρφ = n∂ρU , Jρz = k∂ρU .

(44)

This helical field is not Beltrami field as one can easily find. A more general
ansatz corresponding defined by

Φ = ωt + kz + nφ

would in cylindrical coordinates give rise to both helical magnetic field and
radial electric field depending on ρ only. This field can be obtained by sim-
ply replacing the vector potential with its rotated version and provides the
natural first approximation for the fields associated with rotating magnetic
systems.

A non-vanishing vacuum charge density is however generated when a
constant magnetic field is put into rotation and is implied by the condition
E = v × B stating vanishing of the Lorentz force. This condition does
not follow from the induction law of Faraday although Faraday observed
this effect first. This is also clear from the fact that the sign of the charge
density depends on the direction of rotation.

The non-vanishing charge density is not consistent with the vanishing
of the Kähler 4-current and requires a 3-dimensional CP2 projection and
topologization of the Kähler current. Beltrami condition cannot hold true
exactly for the rotating system. The conclusion is that rotation induces a
phase transition DCP2 = 2 → 3. This could help to understand various
strange effects related to the rotating magnetic systems [G2]. For instance,
the increase of the dimension of CP2 projection could generate join along
boundaries contacts and wormhole contacts leading to the transfer of charge
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between different space-time sheets. The possibly resulting flow of gravita-
tional flux to larger space-time sheets might help to explain the claimed
antigravity effects.

2.6 D = 3 phase allows infinite number of topological charges
characterizing the linking of magnetic field lines

When space-time sheet possesses a D = 3-dimensional CP2 projection, one
can assign to it a non-vanishing and conserved topological charge character-
izing the linking of the magnetic field lines defined by Chern-Simons action
density A ∧ dA/4π for induced Kähler form. This charge can be seen as
classical topological invariant of the linked structure formed by magnetic
field lines.

The topological charge can also vanish for D = 3 space-time sheets. In
Darboux coordinates for which Kähler gauge potential reads as A = PkdQk,
the surfaces of this kind result if one has Q2 = f(Q1) implying A = fdQ1

, f = P1 + P2∂Q1Q
2 , which implies the condition A ∧ dA = 0. For these

space-time sheets one can introduce Q1 as a global coordinate along field
lines of A and define the phase factor exp(i

∫
Aµdxµ) as a wave function

defined for the entire space-time sheet. This function could be interpreted
as a phase of an order order parameter of super-conductor like state and
there is a high temptation to assume that quantum coherence in this sense
is lost for more general D = 3 solutions.

Chern-Simons action is known as helicity in electrodynamics [22]. He-
licity indeed describes the linking of magnetic flux lines as is easy to see
by interpreting magnetic field as incompressible fluid flow having A as vec-
tor potential: B = ∇ × A. One can write A using the inverse of ∇× as
A = (1/∇×)B. The inverse is non-local operator expressible as

1
∇×B(r) =

∫
dV ′ (r − r′)

|r − r′|3 ×B(r′) ,

as a little calculation shows. This allows to write
∫

A ·B as
∫

dV A ·B =
∫

dV dV ′B(r) ·
(

(r − r′)
|r − r′|3 ×B(r′)

)
,

which is completely analogous to the Gauss formula for linking number when
linked curves are replaced by a distribution of linked curves and an average
is taken.

For D = 3 field equations imply that Kähler current is proportional to
the helicity current by a factor which depends on CP2 coordinates, which
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implies that the current is automatically divergence free and defines a con-
served charge for D = 3-dimensional CP2 projection for which the instanton
density vanishes identically. Kähler charge is not equal to the helicity de-
fined by the inner product of magnetic field and vector potential but to a
more general topological charge.

The number of conserved topological charges is infinite since the product
of any function of CP2 coordinates with the helicity current has vanishing
divergence and defines a topological charge. A very natural function basis is
provided by the scalar spherical harmonics of SU(3) defining Hamiltonians
of CP2 canonical transformations and possessing well defined color quantum
numbers. These functions define and infinite number of conserved charges
which are also classical knot invariants in the sense that they are not af-
fected at all when the 3-surface interpreted as a map from CP2 projection
to M4

+ is deformed in M4
+ degrees of freedom. Also canonical transforma-

tions induced by Hamiltonians in irreducible representations of color group
affect these invariants via Poisson bracket action when the U(1) gauge trans-
formation induced by the canonical transformation corresponds to a single
valued scalar function. These link invariants are additive in union whereas
the quantum invariants defined by topological quantum field theories are
multiplicative.

Also non-Abelian topological charges are well-defined. One can general-
ize the topological current associated with the Kähler form to a correspond-
ing current associated with the induced electro-weak gauge fields whereas
for classical color gauge fields the Chern-Simons form vanishes identically.
Also in this case one can multiply the current by CP2 color harmonics to
obtain an infinite number of invariants in D = 3 case. The only difference
is that A ∧ dA is replaced by Tr(A ∧ (dA + 2A ∧A/3)).

There is a strong temptation to assume that these conserved charges
characterize colored quantum states of the conformally invariant quantum
theory as a functional of the light-like 3-surface defining boundary of space-
time sheet or elementary particle horizon surrounding wormhole contacts.
They would be TGD analogs of the states of the topological quantum field
theory defined by Chern-Simons action as highest weight states associated
with corresponding Wess-Zumino-Witten theory. These charges could be
interpreted as topological counterparts of the isometry charges of configura-
tion space of 3-surfaces defined by the algebra of canonical transformations
of CP2.

The interpretation of these charges as contributions of light-like bound-
aries to configuration space Hamiltonians would be natural. The dynamics of
the induced second quantized spinor fields relates to that of Kähler action by
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a super-symmetry, so that it should define super-symmetric counterparts of
these knot invariants. The anti-commutators of these super charges cannot
however contribute to configuration space Kähler metric so that topologi-
cal zero modes are in question. These Hamiltonians and their super-charge
counterparts would be responsible for the topological sector of quantum
TGD.

2.7 Is absolute minimization of Kähler action equivalent with
the topologization/light-likeness of Kähler current and
with second law?

The basic question is whether the Kähler current is either topologized or
light-like for all extremals or only for the absolute minima of Kähler action
in some sense, presumably asymptotically as suggested by the fact that gen-
eralized Beltrami fields correspond to asymptotic self-organization patterns,
when dissipation has become insignificant.

a) The generalized Beltrami conditions or light-likeness can hold true
only asymptotically. First of all, generic non-asymptotic field configurations
have DCP2 = 4, and would thus carry a vanishing Kähler four-current if Bel-
trami conditions were satisfied universally rather than only asymptotically.
jα = 0 would obviously hold true also for the asymptotic configurations, in
particular those with DCP2 < 4 so that empty space Maxwell’s field equa-
tions would be universally satisfied for asymptotic field configurations with
DCP2 < 4.

b) The failure of the generalized Beltrami conditions would mean that
Kähler field is completely analogous to a dissipative Maxwell field since
j · E is non-vanishing (note that isometry currents are conserved although
energy momentum tensor is not). Quantum classical correspondence states
that classical space-time dynamics is by its classical non-determinism able to
mimic the non-deterministic sequence of quantum jumps at space-time level,
in particular dissipation in various length scales defined by the hierarchy of
space-time sheets. Classical fields could represent ”symbolically” the average
dynamics, in particular dissipation, in shorter length scales. For instance,
vacuum 4-current would be a symbolic representation for the average of the
currents consisting of elementary particles.

The obvious objection to the idea is that second law realized as an asymp-
totic vanishing of Lorentz-Kähler force implies that all 3-surfaces approach-
ing same asymptotic state have the same value of Kähler function. This
is actually not a problem since it means an additional symmetry extending
general coordinate invariance. The exponent of Kähler function would be
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highly analogous to a partition function defined as an exponent of Hamil-
tonian with Kähler coupling strength playing the role of temperature. The
absolute minimization of Kähler action would guarantee that the predicted
both signs of Kähler coupling strength and depending on sign Kähler mag-
netic or electric field configurations are stable. The two phases would relate
by time reversal to each other. The role of time reversed dissipation mani-
festing itself as processes like self assembly would involve in essential man-
ner the time reversed negative energy world. The fact that Kähler coupling
strength is of opposite sign for the time reversed dynamics is essential for
internal consistency. For instance, creation of matter from vacuum in big
bang can be seen as time reflection of stable negative energy cosmic strings
as positive energy cosmic strings unstable against decay to magnetic flux
tubes.

2.7.1 Is absolute minimization equivalent with generalized Bel-
trami conditions?

Previous findings inspire the hypothesis that generalized Beltrami conditions
express algebraically the absolute minimization conditions so that they make
sense also in the p-adic case.

a) Generalized Beltrami conditions are satisfied by the asymptotic field
configurations representing self-organization patterns. For non-asymptotic
fields vacuum Lorentz force is non-vanishing and does work in Maxwellian
sense so that j · E is non-vanishing. This would mean that the dynamics
defined by Kähler action could in principle predict even the values of the
parameters related to dissipation such as conductivities and viscosities. The
space-time sheets of the many-sheeted space-time would be busily modelling
its own physics in shorter length scales.

b) Absolute minimization of Kähler action implies that single space-time
surface goes through given 3-surface apart from the non-uniqueness caused
by the non-determinism of Kähler action. This gives four additional local
conditions to the initial values of field equations fixing the time derivatives of
the four dynamical imbedding space coordinates (conditions are analogous
to Bohr conditions).

The topologization of the Kähler current current gives also four local
conditions:
i) For DCP2 < 4 the vanishing of instanton density gives one condition,
and the proportionality of the Kähler current to instanton current gives 3
conditions since the proportionality factor is an arbitrary function of CP2

coordinates. Altogether this makes four conditions.
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ii) For DCP2=4 the vanishing of the Kähler current gives four conditions.
This encourages to think that the absolute minimization of Kähler action
forces the asymptotic behavior (final values instead of initial values) to cor-
respond to dissipation-less state characterized by the generalized Beltrami
conditions.

c) Absolute minimization in a strict sense of the word does not make
sense in the p-adic context since p-adic numbers are not well-ordered, and
one cannot even define the action integral as a p-adic number except perhaps
by algebraic continuation procedure described in the first part of the book.
The generalized Beltrami conditions are however purely algebraic conditions
and make sense also in the p-adic context. Therefore it possible to give a
precise content to the notion of absolute minimization also in p-adic context.

2.7.2 Is absolute minimization equivalent with the second law?

The fact that Beltrami conditions are associated with the asymptotic dy-
namics suggests that absolute minimization is equivalent with the second
law at space-time level. Or putting it more cautiously: second law at space-
time level could be equivalent with absolute minimization. If not, one must
give up absolute minimization and replace it with the second law.

For space-time sheets with negative time orientation and negative en-
ergy, say ”massless extremals” representing phase conjugate laser waves,
field configurations would approach non-dissipating ones in the geometric
past, and the arrow of geometric time would be opposite to the standard
one in this case. This situation is possible for space-time sheets of finite
duration, in particular virtual particle like space-time sheets or the nega-
tive energy space-time sheets extending down to the boundary of imbedding
space (moment of ”big bang”). This would explain at the space-time level
the change of arrow of time and breaking of the second law observed for the
phase conjugate laser waves (used to generate healing and error correction
for instance). In TGD framework second law is not a producer of a ther-
mal chaos but Darwinian selector since state function reduction and state
preparation by self measurements lead from a state with positive entangle-
ment entropy to that with a negative entanglement entropy (defined number
theoretically), and possessing only finitely extended rational entanglement
identifiable as a bound state entanglement.

Absolute minimization of Kähler action indeed induces long range cor-
relations since the positive Kähler action of space-time sheets carrying mag-
netic fields must be compensated by the negative Kähler action of space-
time sheets dominated by Kähler electric fields. The resulting non-local
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long range correlations could serve as correlates for bound state entangle-
ment. More concretely, the stable join along boundaries bonds would be the
correlates for bound state entanglement whereas topological light rays anal-
ogous to the exchange of virtual photons could serve as classical correlates
for unbound entanglement. The closedness (periodicity) of the field lines of
Beltrami fields for space-like Kähler current and periodicity of the field pat-
tern for the time like Kähler current could be space-time correlates for the
rational entanglement. The pinary expansions of rational numbers which
are periodic after finite number of pinary digits indeed represent closed or-
bits in the set of integers modulo p. Amusingly, the first non-periodic pits
of the expansion would in fact be analogous to the dissipative period.

Macro-temporal quantum coherence integrates sequences of quantum
jumps to single effective quantum jump so that effectively a fractal hierarchy
of quantum jumps emerges having the fractal hierarchy of time scales of dis-
sipation resulting from many-sheetedness as a correlate. Even the anatomy
of quantum jump could have space-time correlate. The final state of the
quantum jump would correspond to highly negentropic and non-dissipating
topologically quantized generalized Beltrami fields. State function reduc-
tion and preparation would correspond to the non-deterministic dissipative
approach to the non-dissipative Beltrami field configuration. The points
of space-time sheets with vanishing Kähler 4-currents would be unstable
against quantum jumps generating an instability of the Beltrami field lead-
ing to a field configuration with a non-vanishing Lorentz 4-force and emission
of topological light rays representing unstable entanglement. Quantum jump
would have this kind of instability as a natural space-time correlate.

To sum up, the main lessons would be following.
a) The ability of basically non-dissipative dynamics to mimic dissipative

dynamics in terms of energy momentum tensor would be the basic reason
for why space-times must be 4-surfaces.

b) If absolute minimization of the Kähler action is correct principle, it
must correspond to the second law, which is the Darwinian selector of the
most information rich patterns rather than a thermal killer.

2.8 Generalized Beltrami fields and biological systems

The following arguments support the view that generalized Beltrami fields
play a key role in living systems, and that DCP2 = 2 corresponds to ordered
phase, DCP2 = 3 to spin glass phase and DCP2 = 4 to chaos, with DCP2 = 3
defining life as a phenomenon at the boundary between order and chaos.
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2.8.1 Why generalized Beltrami fields are important for living
systems?

Chirality, complexity, and high level of organization make DCP2 = 3 gener-
alized Beltrami fields excellent candidates for the magnetic bodies of living
systems.

a) Chirality selection is one of the basic signatures of living systems.
Beltrami field is characterized by a chirality defined by the relative sign of the
current and magnetic field, which means parity breaking. Chirality reduces
to the sign of the function ψ appearing in the topologization condition and
makes sense also for the generalized Beltrami fields.

b) Although Beltrami fields can be extremely complex, they are also ex-
tremely organized. The reason is that the function α is constant along flux
lines so that flux lines must in the case of compact Riemann 3-manifold be-
long to 2-dimensional α = constant closed surfaces, in fact two-dimensional
invariant tori [20].

For generalized Beltrami fields the function ψ is constant along the flow
lines of the Kähler current. Space-time sheets with 3-dimensional CP2 pro-
jection serve as an illustrative example. One can use the coordinates for
the CP2 projection as space-time coordinates so that one space-time coordi-
nate disappears totally from consideration. Hence the situation reduces to a
flow in a 3-dimensional sub-manifold of CP2. One can distinguish between
three types of flow lines corresponding to space-like, light-like and time-like
topological current. The 2-dimensional ψ = constant invariant manifolds
are sub-manifolds of CP2. Ordinary Beltrami fields are a special case of
space-like flow with flow lines belonging to the 2-dimensional invariant tori
of CP2. Time-like and light-like situations are more complex since the flow
lines need not be closed so that the 2-dimensional ψ = constant surfaces
can have boundaries.

For periodic self-organization patterns flow lines are closed and ψ =
constant surfaces of CP2 must be invariant tori. The dynamics of the pe-
riodic flow is obtained from that of a steady flow by replacing one spatial
coordinate with effectively periodic time coordinate. Therefore topological
notions like helix structure, linking, and knotting have a dynamical meaning
at the level of CP2 projection. The periodic generalized Beltrami fields are
highly organized also in the temporal domain despite the potentiality for
extreme topological complexity.

For these reasons topologically quantized generalized Beltrami fields pro-
vide an excellent candidate for a generic model for the dynamics of biological
self-organization patterns. A natural guess is that many-sheeted magnetic

45



and Z0 magnetic fields and their generalizations serve as templates for the
helical molecules populating living matter, and explain both chiral selection,
the complex linking and knotting of DNA and protein molecules, and even
the extremely complex and self-organized dynamics of biological systems at
the molecular level.

The intricate topological structures of DNA, RNA, and protein molecules
are known to have a deep significance besides their chemical structure, and
they could even define something analogous to the genetic code. Usually the
topology and geometry of bio-molecules is believed to reduce to chemistry.
TGD suggests that space-like generalized Beltrami fields serve as templates
for the formation of bio-molecules and bio-structures in general. The dy-
namics of bio-systems would in turn utilize the time-like Beltrami fields as
templates. There could even exist a mapping from the topology of magnetic
flux tube structures serving as templates for bio-molecules to the templates
of self-organized dynamics. The helical structures, knotting, and linking of
bio-molecules would thus define a symbolic representation, and even coding
for the dynamics of the bio-system analogous to written language.

2.8.2 DCP2 = 3 systems as boundary between DCP2 = 2 order and
DCP2 = 4 chaos

The dimension of CP2 projection is basic classifier for the asymptotic self-
organization patterns.

1. DCP2 = 4 phase, dead matter, and chaos

DCP2 = 4 corresponds to the ordinary Maxwellian phase in which Kähler
current and charge density vanish and there is no topologization of Kähler
current. By its maximal dimension this phase would naturally correspond to
disordered phase, ordinary dead matter. If one assumes that Kähler charge
corresponds to either em charge or Z0 charge then the signature of this state
of matter would be em neutrality or Z0 neutrality.

2. DCP2 = 2 phase as ordered phase

By the low dimension of CP2 projection DCP2 = 2 phase is the least
stable phase possible only at cold space-time sheets. Kähler current is either
vanishing or light-like, and Beltrami fields are not possible. This phase is
highly ordered and much like a topological quantized version of ferro-magnet.
In particular, it is possible to have a global coordinate varying along the field
lines of the vector potential also now. The magnetic and Z0 magnetic body
of any system is a candidate for this kind of system. Z0 field is indeed always
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present for vacuum extremals having D = 2 and the vanishing of em field
requires that that sin2(θW ) (θW is Weinberg angle) vanishes.

3. DCP2 = 3 corresponds to living matter

DCP2 = 3 corresponds to highly organized phase characterized in the
case of space-like Kähler current by complex helical structures necessarily
accompanied by topologized Kähler charge density ∝ A ·B 6= 0 and Kähler
current E × A + φB. For time like Kähler currents the helical structures
are replaced by periodic oscillation patterns for the state of the system. By
the non-maximal dimension of CP2 projection this phase must be unstable
against too strong external perturbations and cannot survive at too high
temperatures. Living matter is thus excellent candidate for this phase and
it might be that the interaction of the magnetic body with living matter
makes possible the transition from DCP2 = 2 phase to the self-organizing
DCP2 = 3 phase.

Living matter which is indeed populated by helical structures providing
examples of space-like Kähler current. Strongly charged lipid layers of cell
membrane might provide example of time-like Kähler current. Cell mem-
brane, micro-tubuli, DNA, and proteins are known to be electrically charged
and Z0 charge plays key role in TGD based model of catalysis discussed in
[L4]. For instance, denaturing of DNA destroying its helical structure could
be interpreted as a transition leading from D = 3 phase to D = 4 phase.
The prediction is that the denatured phase should be electromagnetically
(or Z0) neutral.

Beltrami fields result when Kähler charge density vanishes. For these
configurations magnetic field and current density take the role of the vector
potential and magnetic field as far as the contact structure is considered.
For Beltrami fields there exist a global coordinate along the field lines of the
vector potential but not along those of the magnetic field. As a consequence,
the covariant consistency condition (∂s − qeAs)Ψ = 0 frequently appearing
in the physics of super conducting systems would make sense along the
flow lines of the vector potential for the order parameter of Bose-Einstein
condensate. If Beltrami phase is super-conducting, then the state of the
system must change in the transition to a more general phase. Since the
field lines of the vector potential define chaotic orbits in this phase, the loss
of coherence of the order parameter implying the loss of superconductivity
by random collisions of particles is what one expects to happen.

The existence of these three phases brings in mind systems allowing
chaotic de-magnetized phase above critical temperature Tc, spin glass phase
at the critical point, and ferromagnetic phase below Tc. Similar analogy
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is provided by liquid phase, liquid crystal phase possible in the vicinity of
the critical point for liquid to solid transition, and solid phase. Perhaps
one could regard DCP2 = 3 phase and life as a boundary region between
DCP2 = 2 order and DCP2 = 4 chaos. This would naturally explain why life
as it is known is possible in relatively narrow temperature interval.

2.9 About small perturbations of field equations

The study of small perturbations of the known solutions of field equations is
a standard manner to get information about the properties of the solutions,
their stability in particular. Fourier expansion is the standard manner to
do the perturbation theory. In recent case an appropriate modification of
this ansatz might make sense if the solution in question is representable
as a map M4

+ → CP2, and the perturbations are rapidly varying when
compared to the components of the induced metric and Kähler form so
that one can make adiabatic approximation and approximate them as being
effectively constant. Presumably also restrictions on directions of wave 4-
vectors kµ = (ω, k)) are necessary so that the direction of wave vector adapts
to the slowly varying background as in ray optics. Also Hamilton Jacobi
structure is expected to modify the most straightforward approach. The
four CP2 coordinates are the dynamical variables so that the situation is
relatively simple.

2.9.1 Generalized plane waves

Individual plane waves are geometrically very special since they represent a
deformation of the space-time surface depending on single coordinate only.
Despite this one might hope that plane waves or their appropriate modifica-
tions allowing to algebraize the treatment of small perturbations could give
useful information also now.

a) Lorentz invariance plus the translational invariance due to the assump-
tion that the induced metric and Kähler form are approximately constant
encourage to think that the coordinates reduce Minkowski coordinates lo-
cally with the orientation of the local Minkowski frame depending slowly
on space-time position. Hamilton Jacobi (S+, S−, w, w) are a good candi-
date for this kind of coordinates. The properties of the Hamilton Jacobi
structure and of the solution ansatz suggest that excitations are generalized
plane waves in longitudinal degrees of freedom only so that four-momentum
would be replaced by the longitudinal momentum. In transverse degrees of
freedom one might expect that holomorphic plane-waves exp(ikT w), where
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kT is transverse momentum, make algebraization possible.
For time-like longitudinal momenta one can choose the local M4 coor-

dinates in such a manner that longitudinal momentum reduces to (ω0, 0),
where ω0 plays the role of rest mass and is analogous to the plasma fre-
quency serving as an infrared cutoff for plasma waves. In these coordinates
the simplest candidates for excitations with time-like momentum would be
of form ∆sk = εakexp(iω0u), where sk are some real coordinates for CP2, ak

are Fourier coefficients, and time-like coordinate is defined as u = S+ + S−.
The excitations moving with light velocity correspond to ω0 = 0, and one
must treat this case separately using plane wave exp(iωS±), where ω has
continuum of values.

c) It is possible that only some preferred CP2 coordinates are excited in
longitudinal degrees of freedom. For DCP2 = 3 ansatz the simplest option
is that the complex CP2 coordinate ξ depends analytically on w and the
longitudinal CP2 coordinate s obeys the plane wave ansatz. ξ(w) = a ×
exp(ikT w), where kT is transverse momentum allows the algebraization of
the solution ansatz also in the transversal degrees of freedom so that a
dispersion relation results. For imaginary values of kT and ω the equations
are real.

2. General form for the second variation of the field equations

For time-like four-momentum the second variation of field equations con-
tains three kinds of terms. There are terms quadratic in ω0 and coming from
the second derivatives of the deformation, terms proportional to iω0 coming
from the variation with respect to the derivatives of CP2 coordinates, and
terms which do not depend on ω0 and come from the variations of metric
and Kähler form with respect to the CP2 coordinates.

In standard perturbation theory the terms proportional to iω0 would
have interpretation as analogs of dissipative terms. This forces to assume
that ω0 is complex: note that in purely imaginary ω0 the equations are real.
The basic assumption is that Kähler action is able to mimic dissipation
despite the fact that energy and momentum are conserved quantities. The
vanishing of the Lorentz force for the absolute minima has an interpretation
as the vanishing of the dissipative effects. This would suggest that the terms
proportional to iω0 vanish for the perturbations of the solution preserving
the non-dissipative character of the asymptotic solutions. This might quite
well result from the vanishing of the contractions with the deformation of the
energy momentum tensor with the second fundamental form and of energy
momentum tensor with the deformation of the second fundamental form
coming from first derivatives.
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Physical intuition would suggest that dissipation-less propagation is pos-
sible only along special directions. Thus the vanishing of the linear terms
should occur only for special directions of the longitudinal momentum vec-
tor, say for light-like four-momenta in the direction of coordinate lines of
S+ or S−. Quite generally, the sub-space of allowed four-momenta is ex-
pected to depend on position since the components of metric and Kähler
form are slowly varying. This dependence is completely analogous with that
appearing in the Hamilton Jacobi (ray-optics) approach to the approximate
treatment of wave equations and makes sense if the phase of the plane wave
varies rapidly as compared to the variation of CP2 coordinates for the un-
perturbed solution.

Complex values of ω0 are also possible, and would allow to deduce impor-
tant information about the rate at which small deviations from asymptotia
vanish as well as about instabilities of the asymptotic solutions. In particu-
lar, for imaginary values of ω0 one obtains completely well-defined solution
ansatz representing exponentially decaying or increasing perturbation.

2.9.2 High energy limit

One can gain valuable information by studying the perturbations at the limit
of very large four-momentum. At this limit the terms which are quadratic in
the components of momentum dominate and come from the second deriva-
tives of the CP2 coordinates appearing in the second fundamental form. The
resulting equations reduce for all CP2 coordinates to the same condition

Tαβkαkβ = 0 .

This condition is generalization of masslessness condition with metric re-
placed by the energy momentum tensor, which means that light velocity is
replaced by an effective light velocity. In fact, energy momentum tensor
effectively replaces metric also in the modified Dirac equation whose form is
dictated by super symmetry. Light-like four momentum is a rather general
solution to the condition and corresponds to ω0 = 0 case.

2.9.3 Reduction of the dispersion relation to the graph of swal-
lowtail catastrophe

Also the general structure of the equations for small perturbations allows to
deduce highly non-trivial conclusions about the character of perturbations.

a) The equations for four CP2 coordinates are simultaneously satisfied
if the determinant associated with the equations vanishes. This condition
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defines a 3-dimensional surface in the 4-dimensional space defined by ω0 and
coordinates of 3-space playing the role of slowly varying control parameters.
4× 4 determinant results and corresponds to a polynomial which is of order
d = 8 in ω0. If the determinant is real, the polynomial can depend on ω2

0

only so that a fourth order polynomial in w = ω2
0 results.

b) Only complex roots are possible in the case that the terms linear
in iω0 are non-vanishing. One might hope that the linear term vanishes
for certain choices of the direction of slowly varying four-momentum vector
kµ(x) at least. For purely imaginary values of ω0 the equations determinant
are real always. Hence catastrophe theoretic description applies in this case
at least, and the so called swallow tail catastrophe [23] with three control
parameters applies to the situation.

c) The general form of the vanishing determinant is

D(w, a, b, c) = w4 − ew3 − cw2 − bw − a .

The transition from the oscillatory to purely dissipative case changes only
the sign of w. By the shift w = ŵ + e/4 the determinant reduces to the
canonical form

D(ŵ, a, b, c) = ŵ4 − cŵ2 − bŵ − a

of the swallowtail catastrophe. This catastrophe has three control variables,
which basically correspond to the spatial 3-coordinates on which the induced
metric and Kähler form depend. The variation of these coefficients at the
space-time sheet of course covers only a finite region of the parameter space
of the swallowtail catastrophe. The number of real roots for w = ω2

0 is four,
two, or none since complex roots appear in complex conjugate pairs for a
real polynomial. The general shape of the region of 3-space is that for a
portion of swallow tail catastrophe.

d) The dispersion relation for the ”rest mass” ω0 (decay rate for the
imaginary value of ω0) has at most four real branches, which conforms with
the fact that there are four dynamical variables. In real case ω0 is analogous
to plasma frequency acting as an infrared cutoff for the frequencies of plasma
excitations. To get some grasp on the situation notice that for a = 0 the
swallowtail reduces to ŵ = 0 and

ŵ3 − cŵ − b = 0 ,

which represents the cusp catastrophe easy to illustrate in 3-dimensional
space. Cusp in turn reduces for b = 0 to ŵ = 0 and fold catastrophe
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Figure 1: The projection of the bifurcation set of the swallowtail catastrophe
to the 3-dimensional space of control variables. The potential function has
four extrema in the interior of the swallowtail bounded by the triangles, no
extrema in the valley above the swallowtail, and 2 extrema elsewhere.

ŵ = ±√c. Thus the catastrophe surface becomes 4-sheeted for c ≥ 0 for
sufficiently small values of the parameters a and b. The possibility of nega-
tive values of ŵ in principle allows ω2 = ŵ + e/4 < 0 solutions identifiable
as exponentially decaying or amplified perturbations. At the high frequency
limit the 4 branches degenerate to a single branch Tαβkαkβ = 0, which as a
special case gives light-like four-momenta corresponding to ω0 = 0 and the
origin of the swallowtail catastrophe.

e) It is quite possible that the imaginary terms proportional to iω0 cannot
be neglected in the time-like case. The interpretation would be as dissipative
effects. If these effects are not too large, an approximate description in terms
of butterfly catastrophe makes still sense. Note however that the second
variation contains besides gravitational terms potentially large dissipative
terms coming from the variation of the induced Kähler form and from the
variation of CP2 Christoffel symbols.

f) Additional complications are encountered at the points, where the
induced Kähler field vanishes since the second variation vanishes identically
at these points. By the arguments represented earlier, these points quite
generally represent instabilities.
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Figure 2: Cusp catastrophe. Vertical direction corresponds to the behavior
variable and orthogonal directions to control variables.

3 Gerbes and TGD

The notion of gerbes has gained much attention during last years in theo-
retical physics and there is an abundant gerbe-related literature in hep-th
archives. Personally I learned about gerbes from the excellent article of
Jouko Mickelson [24] (Jouko was my opponent in PhD dissertation for more
than two decades ago: so the time flows!).

I have already applied the notion of bundle gerbe in TGD framework
in the construction of the Dirac determinant which I have proposed to de-
fine the Kähler function for the configuration space of 3-surfaces (see the
chapter ”Configuration Space Spinor Structure”). The insights provided by
the general results about bundle gerbes discussed in [24] led, not only to a
justification for the hypothesis that Dirac determinant exists for the modi-
fied Dirac action, but also to an elegant solution of the conceptual problems
related to the construction of Dirac determinant in the presence of chiral
symmetry. Furthermore, on basis of the special properties of the modified
Dirac operator there are good reasons to hope that the determinant exists
even without zeta function regularization. The construction also leads to the
conclusion that the space-time sheets serving as causal determinants must be
geodesic sub-manifolds (presumably light like boundary components or ”el-
ementary particle horizons”). Quantum gravitational holography is realized
since the exponent of Kähler function is expressible as a Dirac determinant
determined by the local data at causal determinants and there would be no
need to find absolute minima of Kähler action explicitly.

In the sequel the emergence of 2-gerbes at the space-time level in TGD
framework is discussed and shown to lead to a geometric interpretation of
the somewhat mysterious cocycle conditions for a wide class of gerbes gen-
erated via the ∧d products of connections associated with 0-gerbes. The
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resulting conjecture is that gerbes form a graded-commutative Grassmman
algebra like structure generated by -1- and 0-gerbes. 2-gerbes provide also
a beautiful topological characterization of space-time sheets as structures
carrying Chern-Simons charges at boundary components and the 2-gerbe
variant of Bohm-Aharonov effect occurs for perhaps the most interesting
asymptotic solutions of field equations especially relevant for anyonics sys-
tems, quantum Hall effect, and living matter [E9].

3.1 What gerbes roughly are?

Very roughly and differential geometrically, gerbes can be regarded as a
generalization of connection. Instead of connection 1-form (0-gerbe) one
considers a connection n+1-form defining n-gerbe. The curvature of n-gerbe
is closed n+2-form and its integral defines an analog of magnetic charge. The
notion of holonomy generalizes: instead of integrating n-gerbe connection
over curve one integrates its connection form over n+1-dimensional closed
surface and can transform it to the analog of magnetic flux.

There are some puzzling features associated with gerbes. Ordinary U(1)-
bundles are defined in terms of open sets Uα with gauge transformations
gαβ = g−1

βα defined in Uα ∩Uβ relating the connection forms in the patch Uβ

to that in patch Uα. The 3-cocycle condition

gαβgβγgγα = 1 (45)

makes it possible to glue the patches to a bundle structure.
In the case of 1-gerbes the transition functions are replaced with the

transition functions gαβγ = g−1
γβα defined in triple intersections Uα ∩Uβ ∩Uγ

and 3-cocycle must be replaced with 4-cocycle:

gαβγgβγδgγδαgδαβ = 1 . (46)

The generalizations of these conditions to n-gerbes is obvious.
In the case of 2-intersections one can build a bundle structure naturally

but in the case of 3-intersections this is not possible. Hence the geomet-
ric interpretation of the higher gerbes is far from obvious. One possible
interpretation of non-trivial 1-gerbe is as an obstruction for lifting projec-
tive bundles with fiber space CPn to vector bundles with fiber space Cn+1

[24]. This involves the lifting of the holomorphic transition functions gα de-
fined in the projective linear group PGL(n + 1, C) to GL(n + 1, C). When
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the 3-cocycle condition for the lifted transition functions gαβ fails it can be
replaced with 4-cocycle and one obtains 1-gerbe.

3.2 How do 2-gerbes emerge in TGD?

Gerbes seem to be interesting also from the point of view of TGD, and TGD
approach allows a geometric interpretation of the cocycle conditions for a
rather wide class of gerbes.

Recall that the Kähler form J of CP2 defines a non-trivial magnetically
charged and self-dual U(1)-connection A. The Chern-Simons form ω =
A∧J = A∧dA having CP2 Abelian instanton density J ∧J as its curvature
form and can thus be regarded as a 3-connection form of a 2-gerbe. This
2-gerbe is induced by 0-gerbe.

The coordinate patches Uα are same as for U(1) connection. In the
transition between patches A and ω transform as

A → A + dφ ,

ω → ω + dA2 ,

A2 = φ ∧ J .

(47)

The transformation formula is induced by the transformation formula for
U(1) bundle. Somewhat mysteriously, there is no need to define anything
in the intersections of Uα in the recent case.

The connection form of the 2-gerbe can be regarded as a second ∧d power
of Kähler connection:

A3 ≡ A ∧ dA . (48)

The generalization of this observation allows to develop a different view
about n-gerbes generated as ∧d products of 0-gerbes.

3.2.1 The hierarchy of gerbes generated by 0-gerbes

Consider a collection of U(1) connections Ai). They generate entire hierarchy
of gerbe-connections via the ∧d product

A3 = A1) ∧ dA2) (49)
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defining 2-gerbe having a closed curvature 4-form

F4 = dA1) ∧ dA2) . (50)

∧d product is commutative apart from a gauge transformation and the cur-
vature forms of A1) ∧ dA2) and A2) ∧ dA1) are the same.

Quite generally, the connections Am of m − 1 gerbe and An of n − 1-
gerbe define m + n + 1 connection form and the closed curvature form of
m + n-gerbe as

Am+n+1 = A1)
m ∧ dA2)

n ,

Fm+n+2 = dA1)
m ∧ dA2)

n . (51)

The sequence of gerbes extends up to n = D− 2, where D is the dimension
of the underlying manifold. These gerbes are not the most general ones since
one starts from 0-gerbes. One can of course start from n > 0-gerbes too.

The generalization of the ∧d product to the non-Abelian situation is not
obvious. The problems stem from the that the Lie-algebra valued connection
forms A1) and A2) appearing in the covariant version D = d + A do not
commute.

3.3 How to understand the replacement of 3-cycles with n-
cycles?

If n-gerbes are generated from 0-gerbes it is possible to understand how the
intersections of the open sets emerge. Consider the product of 0-gerbes as
the simplest possible case. The crucial observation is that the coverings Uα

for A1) and Vβ for A2) need not be same (for CP2 this was the case). One can
form a new covering consisting of sets Uα∩Vα1 . Just by increasing the index
range one can replace V with U and one has covering by Uα ∩ Uα1 ≡ Uαα1 .

The transition functions are defined in the intersections Uαα1 ∩ Uββ1 ≡
Uαα1ββ1 and cocycle conditions must be formulated using instead of intersec-
tions Uαβγ the intersections Uαα1ββ1γγ1 . Hence the transition functions can
be written as gαα1ββ1 and the 3-cocycle are replaced with 5-cocycle condi-
tions since the minimal co-cycle corresponds to a sequence of 6 steps instead
of 4:

Uαα1ββ1 → Uα1ββ1γ → Uββ1γγ1 → Uβ1γγ1α → Uγγ1αα1 .
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The emergence of higher co-cycles is thus forced by the modification of the
bundle covering necessary when gerbe is formed as a product of lower gerbes.
The conjecture is that any even gerbe is expressible as a product of 0-gerbes.

An interesting application of the product structure is at the level of con-
figuration space of 3-surfaces (”world of classical worlds”). The Kähler form
of the configuration space defines a connection 1-form and this generates
infinite hierarchy of connection 2n + 1-forms associated with 2n-gerbes.

3.4 Gerbes as graded-commutative algebra: can one express
all gerbes as products of −1 and 0-gerbes?

If one starts from, say 1-gerbes, the previous argument providing a geometric
understanding of gerbes is not applicable as such. One might however hope
that it is possible to represent the connection 2-form of any 1-gerbe as a ∧d
product of a connection 0-form φ of ”-1”-gerbe and connection 1-form A of
0-gerbe:

A2 = φdA ≡ A ∧ dφ ,

with different coverings for φ and A. The interpretation as an obstruction
for the modification of the underlying bundle structure is consistent with
this interpretation.

The notion of −1-gerbe is not well-defined unless one can define the no-
tion of −1 form precisely. The simplest possibility that 0-form transforms
trivially in the change of patch is not consistent. One could identify con-
travariant n-tensors as −n-forms and d for them as divergence and d2 as
the antisymmetrized double divergence giving zero. φ would change in a
gauge transformation by a divergence of a vector field. The integral of a
divergence over closed M vanishes identically so that if the integral of φ
over M is non-vanishing it corresponds to a non-trivial 0-connection. This
interpretation of course requires the introduction of metric.

The requirement that the minimal intersections of the patches for 1-
gerbes are of form Uαβγ would be achieved if the intersections patches can
be restricted to the intersections Uαβγ defined by Uα∩Vγ and Uβ∩Vγ (instead
of Uβ ∩ Vδ), where the patches Vγ would be most naturally associated with
−1-gerbe. It is not clear why one could make this restriction. The general
conjecture is that any gerbe decomposes into a multiple ∧d product of −1
and 0-gerbes just like integers decompose into primes. The ∧d product of
two odd gerbes is anti-commutative so that there is also an analogy with the
decomposition of the physical state into fermions and bosons, and gerbes for
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a graded-commutative super-algebra generalizing the Grassmann algebra of
manifold to a Grassmann algebra of gerbe structures for manifold.

3.5 The physical interpretation of 2-gerbes in TGD frame-
work

2-gerbes could provide some insight to how to characterize the topological
structure of the many-sheeted space-time.

a) The cohomology group H4 is obviously crucial in characterizing 2-
gerbe. In TGD framework many-sheetedness means that different space-
time sheets with induced metric having Minkowski signature are separated
by elementary particle horizons which are light like 3-surfaces at which the
induced metric becomes degenerate. Also the time orientation of the space-
time sheet can change at these surfaces since the determinant of the induced
metric vanishes.

This justifies the term elementary particle horizon and also the idea
that one should treat different space-time sheets as generating indepen-
dent direct summands in the homology group of the space-time surface:
as if the space-time sheets not connected by join along boundaries bonds
were disjoint. Thus the homology group H4 and 2-gerbes defining instanton
numbers would become important topological characteristics of the many-
sheeted space-time.

b) The asymptotic behavior of the general solutions of field equations
can be classified by the dimension D of the CP2 projection of the space-
time sheet. For D = 4 the instanton density defining the curvature form of
2-gerbe is non-vanishing and instanton number defines a topological charge.
Also the values of the Chern-Simons invariants associated with the bound-
ary components of the space-time sheet define topological quantum numbers
characterizing the space-time sheet and their sum equals to the instanton
charge. CP2 type extremals represent a basic example of this kind of situa-
tion. From the physical view point D = 4 asymptotic solutions correspond
to what might be regarded chaotic phase for the flow lines of the Kähler mag-
netic field. Kähler current vanishes so that empty space Maxwell’s equations
are satisfied.

c) For D = 3 situation is more subtle when boundaries are present so that
the higher-dimensional analog of Aharonov-Bohm effect becomes possible.
In this case instanton density vanishes but the Chern-Simons invariants
associated with the boundary components can be non-vanishing. Their sum
obviously vanishes. The space-time sheet can be said to be a neutral C-S
multipole. Separate space-time sheets can become connected by join along
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boundaries bonds in a quantum jump replacing a space-time surface with a
new one. This means that the cohomology group H4 as well as instanton
charges and C-S charges of the system change.

Concerning the asymptotic dynamics of the Kähler magnetic field, D =
3 phase corresponds to an extremely complex but highly organized phase
serving as an excellent candidate for the modelling of living matter. Both
the TGD based description of anyons and quantum Hall effect and the model
for topological quantum computation based on the braiding of magnetic flux
tubes rely heavily on the properties D = 3 phase [E9].

The non-vanishing of the C-S form implies that the flow lines of the
Kähler magnetic are highly entangled and have as an analog mixing hy-
drodynamical flow. In particular, one cannot define non-trivial order pa-
rameters, say phase factors, which would be constant along the lines. The
interpretation in terms of broken super-conductivity suggests itself. Kähler
current can be non-vanishing so that there is no counterpart for this phase
at the level of Maxwell’s equations.

4 Vacuum extremals

Vacuum extremals come as two basic types: CP2 type vacuum extremals for
which the induced Kähler field and Kähler action are non-vanishing and the
extremals for which the induced Kähler field vanishes. The deformations
of both extremals are expected to be of fundamental importance in TGD
universe. Vacuum extremals are not gravitational vacua and they are indeed
fundamental in TGD inspired cosmology.

4.1 CP2 type extremals

4.1.1 CP2 type vacuum extremals

These extremals correspond to various isometric imbeddings of CP2 to M4
+×

CP2. One can also drill holes to CP2. Using the coordinates of CP2 as
coordinates for X4 the imbedding is given by the formula

mk = mk(u) ,

mklṁ
kṁl = 0 , (52)

where u(sk) is an arbitrary function of CP2 coordinates. The latter condition
tells that the curve representing the projection of X4 to M4 is light like
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curve. One can choose the functions mi, i = 1, 2, 3 freely and solve m0 from
the condition expressing light likeness so that the number of this kind of
extremals is very large.

The induced metric and Kähler field are just those of CP2 and energy
momentum tensor Tαβ vanishes identically by the self duality of the Kähler
form of CP2. Also the canonical current jα = DβJαβ associated with the
Kähler form vanishes identically. Therefore the field equations in the interior
of X4 are satisfied. The field equations are also satisfied on the boundary
components of CP2 type extremal because the non-vanishing boundary term
is, besides the normal component of Kähler electric field, also proportional
to the projection operator to the normal space and vanishes identically since
the induced metric and Kähler form are identical with the metric and Kähler
form of CP2.

As a special case one obtains solutions for which M4 projection is light
like geodesic. The projection of m0 = constant surfaces to CP2 is u =
constant 3-submanifold of CP2. Geometrically these solutions correspond
to a propagation of a massless particle. In a more general case the inter-
pretation as an orbit of a massless particle is not the only possibility. For
example, one can imagine a situation, where the center of mass of the par-
ticle is at rest and motion occurs along a circle at say (m1, m2) plane. The
interpretation as a massive particle is natural. Amusingly, there is nice
analogy with the classical theory of Dirac electron: massive Dirac fermion
moves also with the velocity of light (zitterbewegung). The quantization
of this random motion with light velocity leads to Virasoro conditions and
this led to a breakthrough in the understanding of the p-adic QFT limit of
TGD. Furthermore, it has turned out that Super Virasoro invariance is a
general symmetry of the configuration space geometry and quantum TGD
and appears both at the level of imbedding space and space-time surfaces.

The action for all extremals is same and given by the Kähler action for
the imbedding of CP2. The value of the action is given by

S = − π

8αK
. (53)

To derive this expression we have used the result that the value of Lagrangian
is constant: L = 4/R4, the volume of CP2 is V (CP2) = π2R4/2 and the
definition of the Kähler coupling strength k1 = 1/16παK (by definition,
πR is the length of CP2 geodesics). Four-momentum vanishes for these
extremals so that they can be regarded as vacuum extremals. The value of
the action is negative so that these vacuum extremals are indeed favored by
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the minimization of the Kähler action. The absolute minimization of Kähler
action suggests that ordinary vacuums with vanishing Kähler action density
are unstable against the generation of CP2 type extremals. There are even
reasons to expect that CP2 type extremals are for TGD what black holes
are for GRT. Indeed, the nice generalization of the area law for the entropy
of black hole [E5] supports this view.

In accordance with the basic ideas of TGD topologically condensed vac-
uum extremals should somehow correspond to massive particles. The prop-
erties of the CP2 type vacuum extremals are in accordance with this inter-
pretation. Although these objects move with a velocity of light, the motion
can be transformed to a mere zitterbewegung so that the center of mass
motion is trivial. Even the generation of the rest mass could might be un-
derstood classically as a consequence of the minimization of action. Long
range Kähler fields generate negative action for the topologically condensed
vacuum extremal (momentum zero massless particle) and Kähler field en-
ergy in turn is identifiable as the rest mass of the topologically condensed
particle.

An interesting feature of these objects is that they can be regarded as
gravitational instantons [25]. A further interesting feature of CP2 type ex-
tremals is that they carry nontrivial classical color charges. The possible
relationship of this feature to color confinement raises interesting questions.
Could one model classically the formation of the color singlets to take place
through the emission of ”colorons”: states with zero momentum but non-
vanishing color? Could these peculiar states reflect the infrared properties
of the color interactions?

4.1.2 Are CP2 type non-vacuum extremals possible?

The isometric imbeddings of CP2 are all vacuum extremals so that these
extremals as such cannot correspond to physical particles. One obtains
however nonvacuum extremals as deformations of these solutions. There
are several types of deformations leading to nonvacuum solutions. In order
to describe some of them, recall the expressions of metric and Kähler form
of CP2 in the coordinates (r,Θ,Ψ,Φ) [26] are given by

ds2

R2
=

dr2

(1 + r2)2
+

r

2(1 + r2))2
(dΨ + cos(Θ)dΦ)2

+
r2

(4(1 + r2)
(dΘ2 + sin2ΘdΦ2) ,
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J =
r

(1 + r2)
dr ∧ (dΨ + cos(Θ)dΦ)

− r2

(2(1 + r2)
sin(Θ)dΘ ∧ dΦ . (54)

The scaling of the line element is defined so that πR is the length of the CP2

geodesic line. Note that Φ and Ψ appear as ”cyclic” coordinates in metric
and Kähler form: this feature plays important role in the solution ansatze
to be described.

Let M4 = M2 × E2 denote the decomposition of M4 to a product of
2-dimensional Minkowski space and 2-dimensional Euclidian plane. This
decomposition corresponds physically to the decomposition of momentum
degrees of freedom for massless particle: E2 corresponds to polarization
degrees of freedom.

There are several types of nonvacuum extremals.
a) ”Virtual particle” extremals: the mass spectrum is continuous (also

Euclidian momenta are allowed) but these extremals reduce to vacuum ex-
tremals in the massless limit.

b) Massless extremals.
Consider first an example of virtual particle extremal. The simplest

extremal of this type is obtained in the following form

mk = akΨ + bkΦ . (55)

Here ak and bk are some constant quantities. Field equations are equivalent
to the conditions expressing four-momentum conservation and are identi-
cally satisfied the reason being that induced metric and Kähler form do not
depend on the coordinates Ψ and Φ.

Extremal describes 3-surface, which moves with constant velocity in M4.
Four-momentum of the solution can be both space and time like. In the
massless limit solution however reduces to a vacuum extremal. Therefore
the interpretation as an off mass shell massless particle seems appropriate.

Massless extremals are obtained from the following solution ansatz.

m0 = m3 = aΨ + bΦ ,

(m1,m2) = (m1(r,Θ),m2(r,Θ)) . (56)

Only E2 degrees of freedom contribute to the induced metric and the line
element is obtained from
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ds2 = ds2
CP2

− (dm1)2 − (dm2)2 . (57)

Field equations reduce to conservation condition for the componenents of
four-momentum in E2 plane. By their cyclicity the coordinates Ψ and Φ
disappear from field equations and one obtains essentially current conserva-
tion condition for two-dimensional field theory defined in space spanned by
the coordinates r and Θ.

(J i
a),i = 0 ,

J i
a = T ijfa

,j

√
g . (58)

Here the index i and a refer to r and Θ and to E2 coordinates m1 and m2

respectively. T ij denotes the canonical energy momentum tensor associated
with Kähler action. One can express the components of T ij in terms of
induced metric and CP2 metric in the following form

T ij = (−gikgjl + gijgkl/2)skl . (59)

This expression holds true for all components of the energy momentum
tensor.

Since field equations are essentially two-dimensional conservation condi-
tions they imply that components of momentum currents can be regarded
as vector fields of some canonical transformations

J i
a = εijHa

,j , (60)

where εij denotes two-dimensional constant symplectic form. An open prob-
lem is whether one could solve field equations exactly and whether there
exists some nonlinear superposition principle for the solutions of these equa-
tions. Solutions are massless since transversal momentum densities vanish
identically.

Consider as a special case the solution obtained by assuming that one E2

coordinate is constant and second coordinate is function f(r) of the variable
r only. Field equations reduce to the following form

f,r = ± k

(1 + r2)1/3

√
r2 − k2(1 + r2)4/3 . (61)
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Figure 3: Topological sum of CP2:s as Feynmann graph with lines thickened
to four-manifolds

The solution is well defined only for sufficiently small values of the parameter
k appearing as integration constant and becomes ill defined at two singular
values of the variable r. Boundary conditions are identically satisfied at the
singular values of r since the radial component of induced metric diverges at
these values of r. The result leads to suspect that the generation of boundary
components dynamically is a general phenomenon so that all nonvacuum
solutions have boundary components in accordance with basic ideas of TGD.

4.1.3 CP2#CP2#...#CP2:s as generalized Feynmann graphs

There are reasons to believe that point like particles might be identified as
CP2 type extremals in TGD approach. Also the geometric counterparts of
the massless on mass shell particles and virtual particles have been identi-
fied. It is natural to extend this idea to the level of particle interactions:
the lines of Feynmann diagrams of quantum field theory are thickened to
four-manifolds, which are in a good approximation CP2 type vacuum ex-
tremals. This would mean that generalized Feynmann graphs are essentially
connected sums of CP2:s (see Fig. 4.1.3): X4 = CP2#CP2....#CP2).

Unfortunately, this picture seems to be oversimplified. First, it is ques-
tionable whether the cross sections for the scattering of CP2 type extremals
have anything to do with the cross sections associated with the standard
gauge interactions. A naive geometric argument suggests that the cross sec-
tion should reflect the geometric size of the scattered objects and therefore
be of the order of CP2 radius for topologically non-condensed CP2 type
extremals. The observed cross sections would result at the first level of
condensation, where particles are effectively replaced by surfaces with size
of order Compton length. Secondly, the hvac = −D rule, considered in
the previous chapter, suggests that only real particles correspond to the
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CP2 type extremals whereas virtual particles in general correspond to the
vacuum extremals with a vanishing Kähler action. The reason is that the
negative exponent of the Kähler action reduces the contribution of the CP2

type extremals to the functional integral very effectively. Therefore the ex-
changes of CP2 type extremals are suppressed by the negative exponent of
the Kähler action very effectively so that geometric scattering cross section
is obtained.

4.2 Vacuum extremals with vanishing Kähler field

Vacuum extremals correspond to 4-surfaces with vanishing Kähler field and
therefore to gauge field zero configurations of gauge field theory. These
surfaces have CP2 projection, which is Legendre manifold. The condition
expressing Legendre manifold property is obtained in the following man-
ner. Kähler potential of CP2 can be expressed in terms of the canonical
coordinates (Pi, Qi) for CP2 as

A =
∑

k

PkdQk . (62)

The conditions

Pk = ∂Qkf(Qi) , (63)

where f(Qi) is arbitrary function of its arguments, guarantee that Kähler
potential is pure gauge. It is clear that canonical transformations, which
act as local U(1) gauge transformations, transform different vacuum config-
urations to each other so that vacuum degeneracy is enormous. Also M4

+

diffeomorphisms act as the dynamical symmetries of the vacuum extremals.
Some sub-group of these symmetries extends to the isometry group of the
configuration space in the proposed construction of the configuration space
metric. The vacuum degeneracy is still enhanced by the fact that the topol-
ogy of the four-surface is practically free.

Vacuum extremals are certainly not absolute minima of the action. For
the induced metric having Minkowski signature the generation of Kähler
electric fields lowers the action. For Euclidian signature both electric and
magnetic fields tend to reduce the action. Therefore the generation of Eu-
clidian regions of space-time is expected to occur. CP2 type extremals,
identifiable as real (as contrast to virtual) elementary particles, can be in-
deed regarded as these Euclidian regions.

65



Particle like vacuum extremals can be classified roughly by the number
of the compactified dimensions D having size given by CP2 length. Thus
one has D = 3 for CP2 type extremals, D = 2 for string like objects, D = 1
for membranes and D = 0 for pieces of M4. As already mentioned, the rule
hvac = −D relating the vacuum weight of the Super Virasoro representation
to the number of compactified dimensions of the vacuum extremal is very
suggestive. D < 3 vacuum extremals would correspond in this picture to
virtual particles, whose contribution to the generalized Feynmann diagram
is not supressed by the exponential of Kähler action unlike that associated
with the virtual CP2 type lines.

M4 type vacuum extremals (representable as maps M4
+ → CP2 by def-

inition) are also expected to be natural idealizations of the space-time at
long length scales obtained by smoothing out small scale topological inho-
mogenities (particles) and therefore they should correspond to space-time
of GRT in a reasonable approximation.

The reason would ”Yin-Yang principle” discussed in [?].
a) Consider first the option for which Kähler function corresponds to

an absolute minimum of Kähler action. Vacuum functional as an exponent
of Kähler function is expected to concentrate on those 3-surfaces for which
the Kähler action is non-negative. On the other hand, the requirement that
Kähler action is absolute minimum for the space-time associated with a
given 3-surface, tends to make the action negative. Therefore the vacuum
functional is expected to differ considerably from zero only for 3-surfaces
with a vanishing Kähler action per volume. It could also occur that the
degeneracy of 3-surfaces with same large negative action compensates the
exponent of Kähler function.

b) If preferred extrema correspond to Kähler calibrations or their duals
[E2], Yin-Yang principle is modified to a more local principle. For Kähler
calibrations (their duals) the absolute value of action in given region is min-
imized (maximized). A given region with positive (negative sign) of action
density favors Kähler electric (magnetic) fields. In long length scales the
average density of Kähler action per four-volume tends to vanish so that
Kähler function of the entire universe is expected to be very nearly zero.
This regularizes the theory automatically and implies that average Kähler
action per volume vanishes. Positive and finite values of Kähler function are
of course favored.

In both cases the vanishing of Kähler action per volume in long length
scales makes vacuum extremals excellent idealizations for the smoothed out
space-time surface. Robertson-Walker cosmologies provide a good example
in this respect. As a matter fact the smoothed out space-time is not a mere
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fictive concept since larger space-time sheets realize it as a essential part of
the Universe.

Several absolute minima could be possible and the non-determinism of
the vacuum extremals is not expected to be reduced completely. The re-
maining degeneracy could be even infinite. A good example is provided by
the vacuum extremals representable as maps M4

+ → D1, where D1 is one-
dimensional curve of CP2. This degeneracy could be interpreted as a space-
time correlate for the non-determinism of quantum jumps with maximal
deterministic regions representing quantum states in a sequence of quantum
jumps.

5 Non-vacuum extremals

5.1 Cosmic strings

Cosmic strings are extremals of type X2 × S2, where X2 is minimal surface
in M4

+ (analogous to the orbit of a bosonic string) and S2 is the homolog-
ically non-trivial geodesic sphere of CP2. The action of these extremals is
positive and thus absolute minima are certainly not in question. One can
however consider the possibility that these extremals are building blocks of
the absolute minimum space-time surfaces since the absolute minimization
of the Kähler action is global rather than a local principle. Cosmic strings
can contain also Kähler charged matter in the form of small holes containing
elementary particle quantum numbers on their boundaries and the negative
Kähler electric action for a topologically condensed cosmic string could can-
cel the Kähler magnetic action.

The string tension of the cosmic strings is given by

T =
1

8αKR2
' .2210−6 1

G
, (64)

where αK ' αem has been used to get the numerical estimate. The string
tension is of the same order of magnitude as the string tension of the cosmic
strings of GUTs and this leads to the model of the galaxy formation pro-
viding a solution to the dark matter puzzle as well as to a model for large
voids as caused by the presence of a strongly Kähler charged cosmic string.
Cosmic strings play also fundamental role in the TGD inspired very early
cosmology.
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5.2 Massless extremals

Massless extremals (or topological light rays) are characterized by massless
wave vector p and polarization vector ε orthogonal to this wave vector. Using
the coordinates of M4 as coordinates for X4 the solution is given as

sk = fk(u, v) ,
u = p ·m , v = ε ·m ,
p · ε = 0 , p2 = 0 .

(65)

CP2 coordinates are arbitrary functions of p · m and ε · m. Clearly these
solutions correspond to plane wave solutions of gauge field theories. It is
important to notice however that linear super position doesn’t hold as it
holds in Maxwell phase. Gauge current is proportional to wave vector and its
divergence vanishes as a consequence. Also cylindrically symmetric solutions
for which the transverse coordinate is replaced with the radial coordinate
ρ =

√
m2

1 + m2
2 are possible. In fact, v can be any function of the coordinates

m1,m2 transversal to the light like vector p.
Boundary conditions on the boundaries of the massless extremal are

satisfied provided the normal component of the energy momentum tensor
vanishes. Since energy momentum tensor is of the form Tαβ ∝ pαpβ the
conditions Tnβ = 0 are satisfied if the M4 projection of the boundary is
given by the equations of form

H(p ·m, ε ·m, ε1 ·m) = 0 ,
ε · p = 0 , ε1 · p = 0 , ε · ε1 = 0 .

(66)

where H is arbitrary function of its arguments. Recall that for M4 type
extremals the boundary conditions are also satisfied if Kähler field vanishes
identically on the boundary.

The following argument suggests that there are not very many manners
to satisfy boundary conditions in case of M4 type extremals. The bound-
ary conditions, when applied to M4 coordinates imply the vanishing of the
normal component of energy momentum tensor. Using coordinates, where
energy momentum tensor is diagonal, the requirement boils down to the
condition that at least one of the eigen values of Tαβ vanishes so that the
determinant det(Tαβ) must vanish on the boundary: this condition defines
3-dimensional surface in X4. In addition, the normal of this surface must
have same direction as the eigen vector associated with the vanishing eigen
value: this means that three additional conditions must be satisfied and
this is in general true in single point only. The boundary conditions in CP2

coordinates are satisfied provided that the conditions
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JnβJk
l∂βsl = 0

are satisfied. The identical vanishing of the normal components of Kähler
electric and magnetic fields on the boundary of massless extremal property
provides a manner to satisfy all boundary conditions but it is not clear
whether there are any other manners to satisfy them.

The characteristic feature of the massless extremals is that in general the
Kähler gauge current is non-vanishing. In ordinary Maxwell electrodynam-
cis this is not possible. This means that these extremals are accompanied
by vacuum current, which contains in general case both weak and electro-
magnetic terms as well as color part.

A possible interpretation of the solution is as the exterior space-time to
a topologically condensed particle with vanishing mass described by mass-
less CP2 type extremal, say photon or neutrino. In general the surfaces in
question have boundaries since the coordinates sk are are bounded: this is in
accordance with the general ideas about topological condensation. The fact
that massless plane wave is associated with CP2 type extremal combines
neatly the wave and particle aspects at geometrical level.

The fractal hierarchy of space-time sheets implies that massless ex-
tremals should interesting also in long length scales. The presence of a
light like electromagnetic vacuum current implies the generation of coher-
ent photons and also coherent gravitons are generated since the Einstein
tensor is also non-vanishing and light like (proportional to kαkβ). Massless
extremals play an important role in the TGD based model of bio-system as
a macroscopic quantum system. The possibility of vacuum currents is what
makes possible the generation of the highly desired coherent photon states.

5.3 Generalization of the solution ansatz defining massless
extremals (MEs)

The solution ansatz for MEs has developed gradually to an increasingly
general form and the following formulation is the most general one achieved
hitherto. Rather remarkably, it rather closely resembles the solution ansatz
for the CP2 type extremals and has direct interpretation in terms of geo-
metric optics. Equally remarkable is that the latest generalization based on
the introduction of the local light cone coordinates was inspired by quantum
holography principle.

The solution ansatz for MEs has developed gradually to an increasingly
general form and the following formulation is the most general one achieved
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hitherto. Rather remarkably, it rather closely resembles the solution ansatz
for the CP2 type extremals and has direct interpretation in terms of geo-
metric optics. Equally remarkable is that the latest generalization based on
the introduction of the local light cone coordinates was inspired by quantum
holography principle.

5.3.1 Local light cone coordinates

The solution involves a decomposition of M4
+ tangent space localizing the

decomposition of Minkowski space to an orthogonal direct sum M2 ⊕ E2

defined by light-like wave vector and polarization vector orthogonal to it.
This decomposition defines what might be called local light cone coordinates.

a) Denote by mi the linear Minkowski coordinates of M4. Let (S+, S−, E1, E2)
denote local coordinates of M4

+ defining a local decomposition of the tangent
space M4 of M4

+ into a direct orthogonal sum M4 = M2⊕E2 of spaces M2

and E2. This decomposition has interpretation in terms of the longitudinal
and transversal degrees of freedom defined by local light-like four-velocities
v± = ∇S± and polarization vectors εi = ∇Ei assignable to light ray.

b) With these assumptions the coordinates (S±, Ei) define local light
cone coordinates with the metric element having the form

ds2 = 2g+−dS+dS− + g11(dE1)2 + g22(dE2)2 . (67)

If complex coordinates are used in transversal degrees of freedom one has
g11 = g22.

c) This family of light cone coordinates is not the most general fam-
ily since longitudinal and transversal spaces are orthogonal. One can also
consider light-cone coordinates for which one non-diagonal component, say
m1+, is non-vanishing if the solution ansatz is such that longitudinal and
transversal spaces are orthogonal for the induced metric.

5.3.2 A conformally invariant family of local light cone coordi-
nates

The simplest solutions to the equations defining local light cone coordinates
are of form S± = k ·m giving as a special case S± = m0 ±m3. For more
general solutions of from

S± = m0 ± f(m1,m2,m3) , (∇3f)2 = 1 ,

where f is an otherwise arbitrary function, this relationship reads as
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S+ + S− = 2m0 .

This condition defines a natural rest frame. One can integrate f from its
initial data at some two-dimensional f = constant surface and solution
describes curvilinear light rays emanating from this surface and orthogonal
to it. The flow velocity field v = ∇f is irrotational so that closed flow lines
are not possible in a connected region of space and the condition v2 = 1
excludes also closed flow line configuration with singularity at origin such
as v = 1/ρ rotational flow around axis.

One can identify E2 as a local tangent space spanned by polarization vec-
tors and orthogonal to the flow lines of the velocity field v = ∇f(m1, m2,m3).
Since the metric tensor of any 3-dimensional space allows always diagonal-
ization in suitable coordinates, one can always find coordinates (E1, E2)
such that (f,E1, E2) form orthogonal coordinates for m0 = constant hy-
perplane. Obviously one can select the coordinates E1 and E2 in infinitely
many manners.

5.3.3 Closer inspection of the conditions defining local light cone
coordinates

Whether the conformal transforms of the local light cone coordinates {S± =
m0±f(m1,m2,m3), Ei} define the only possible compositions M2⊕E2 with
the required properties, remains an open question. The best that one might
hope is that any function S+ defining a family of light-like curves defines a
local decomposition M4 = M2 ⊕E2 with required properties.

a) Suppose that S+ and S− define light-like vector fields which are not
orthogonal (proportional to each other). Suppose that the polarization vec-
tor fields εi = ∇Ei tangential to local E2 satisfy the conditions εi ·∇S+ = 0.
One can formally integrate the functions Ei from these condition since the
initial values of Ei are given at m0 = constant slice.

b) The solution to the condition ∇S+ · εi = 0 is determined only modulo
the replacement

εi → ε̂i = εi + k∇S+ ,

where k is any function. With the choice

k = −∇Ei · ∇S−

∇S+ · ∇S−

one can satisfy also the condition ε̂i · ∇S− = 0.
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c) The requirement that also ε̂i is gradient is satisfied if the integrability
condition

k = k(S+)

is satisfied: in this case ε̂i is obtained by a gauge transformation from εi.
The integrability condition can be regarded as an additional, and obviously
very strong, condition for S− once S+ and Ei are known.

d) The problem boils down to that of finding local momentum and polar-
ization directions defined by the functions S+, S− and E1 and E2 satisfying
the orthogonality and integrability conditions

(∇S+)2 = (∇S−)2 = 0 , ∇S+ · ∇S− 6= 0 ,

∇S+ · ∇Ei = 0 , ∇Ei·∇S−
∇S+·∇S− = ki(S+) .

The number of integrability conditions is 3+3 (all derivatives of ki except
the one with respect to S+ vanish): thus it seems that there are not much
hopes of finding a solution unless some discrete symmetry relating S+ and
S− eliminates the integrability conditions altogether.

A generalization of the spatial reflection f → −f working for the sep-
arable Hamilton Jacobi function S± = m0 ± f ansatz could relate S+ and
S− to each other and trivialize the integrability conditions. The symmetry
transformation of M4

+ must perform the permutation S+ ↔ S−, preserve
the light-likeness property, map E2 to E2, and multiply the inner products
between M2 and E2 vectors by a mere conformal factor. This encourages
the conjecture that all solutions are obtained by conformal transformations
from the solutions S± = m0 ± f .

5.3.4 General solution ansatz for MEs for given choice of local
light cone coordinates

Consider now the general solution ansatz assuming that a local wave-vector-
polarization decomposition of M4

+ tangent space has been found.
a) Let E(S+, E1, E2) be an arbitrary function of its arguments: the

gradient ∇E defines at each point of E2 an S+-dependent (and thus time
dependent) polarization direction orthogonal to the direction of local wave
vector defined by ∇S+. Polarization vector depends on E2 position only.

b) Quite a general family of MEs corresponds to the solution family of
the field equations having the general form
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sk = fk(S+, E) ,

where sk denotes CP2 coordinates and fk is an arbitrary function of S+ and
E. The solution represents a wave propagating with light velocity and having
definite S+ dependent polarization in the direction of ∇E. By replacing S+

with S− one obtains a dual solution. Field equations are satisfied because
energy momentum tensor and Kähler current are light-like so that all tensor
contractions involved with the field equations vanish: the orthogonality of
M2 and E2 is essential for the light-likeness of energy momentum tensor
and Kähler current.

c) The simplest solutions of the form S± = m0±m3, (E1, E2) = (m1, m2)
and correspond to a cylindrical MEs representing waves propagating in the
direction of the cylinder axis with light velocity and having polarization
which depends on point (E1, E2) and S+ (and thus time). For these solutions
four-momentum is light-like: for more general solutions this cannot be the
case. Polarization is in general case time dependent so that both linearly
and circularly polarized waves are possible. If m3 varies in a finite range of
length L, then ’free’ solution represents geometrically a cylinder of length L
moving with a light velocity. Of course, ends could be also anchored to the
emitting or absorbing space-time surfaces.

d) For the general solution the cylinder is replaced by a three-dimensional
family of light like curves and in this case the rectilinear motion of the ends
of the cylinder is replaced with a curvilinear motion with light velocity un-
less the ends are anchored to emitting/absorbing space-time surfaces. The
non-rotational character of the velocity flow suggests that the freely mov-
ing particle like 3-surface defined by ME cannot remain in a infinite spatial
volume. The most general ansatz for MEs should be useful in the intermedi-
ate and nearby regions of a radiating object whereas in the far away region
radiation solution is excepted to decompose to cylindrical ray like MEs for
which the function f(m1,m2,m2) is a linear function of mi.

e) One can try to generalize the solution ansatz further by allowing
the metric of M4

+ to have components of type gi+ or gi− in the light cone
coordinates used. The vanishing of T 11, T+1, and T−− is achieved if gi± = 0
holds true for the induced metric. For sk = sk(S+, E1) ansatz neither g2±
nor g1− is affected by the imbedding so that these components of the metric
must vanish for the Hamilton Jacobi structure:

ds2 = 2g+−dS+dS− + 2g1+dE1dS+ + g11(dE1)2 + g22(dE2)2 . (68)
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g1+ = 0 can be achieved by an additional condition

m1+ = skl∂1s
k∂+sk . (69)

The diagonalization of the metric seems to be a general aspect of absolute
minima. The absence of metric correlations between space-time degrees of
freedom for asymptotic self-organization patterns is somewhat analogous
to the minimization of non-bound entanglement in the final state of the
quantum jump.

5.3.5 Are the boundaries of space-time sheets quite generally
light like surfaces with Hamilton Jacobi structure?

Quantum holography principle naturally generalizes to an approximate prin-
ciple expected to hold true also in non-cosmological length and time scales.

a) The most general ansatz for topological light rays or massless ex-
tremals (MEs) inspired by the quantum holographic thinking relies on the
introduction of the notion of local light cone coordinates S+, S−, E1, E2. The
gradients ∇S+ and ∇S− define two light like directions just like Hamilton
Jacobi functions define the direction of propagation of wave in geometric
optics. The two polarization vector fields ∇E1 and ∇E2 are orthogonal to
the direction of propagation defined by either S+ or S−. Since also E1 and
E2 can be chosen to be orthogonal, the metric of M4

+ can be written locally
as ds2 = g+−dS+dS− + g11dE2

1 + g22dE2
2 . In the earlier ansatz S+ and S−

where restricted to the variables k ·m and k̃ ·m, where k and k̃ correspond
to light like momentum and its mirror image and m denotes linear M4 co-
ordinates: these MEs describe cylindrical structures with constant direction
of wave propagation expected to be most important in regions faraway from
the source of radiation.

b) Boundary conditions are satisfied if the 3-dimensional boundaries of
MEs have one light like direction (S+ or S− is constant). This means that
the boundary of ME has metric dimension d = 2 and is characterized by an
infinite-dimensional super-canonical and super-conformal symmetries just
like the boundary of the imbedding space M4

+ × CP2: The boundaries are
like moments for mini big bangs (in TGD based fractal cosmology big bang
is replaced with a silent whisper amplified to not necessarily so big bang).

c) These observations inspire the conjecture that boundary conditions
for M4 like space-time sheets fixed by the absolute minimization of Kähler
action quite generally require that space-time boundaries correspond to light
like 3-surfaces with metric dimension equal to d = 2. This does not yet imply
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that light like surfaces of imbedding space would take the role of the light
cone boundary: these light like surface could be seen only as a special case
of causal determinants analogous to event horizons.

5.4 Maxwell phase

”Maxwell phase” corresponds to small deformations of the M4 type vacuum
extremals. Since energy momentum tensor is quadratic in Kähler field the
term proportional to the contraction of the energy momentum tensor with
second fundamental form drops from field equations and one obtains in
lowest order the following field equations

jαJk
ls

l
,α = 0 . (70)

These equations are satisfied if Maxwell’s equations

jα = 0 (71)

hold true. Massless extremals and Maxwell phase clearly exclude each other
and it seems that they must corresponds to different space-time sheets.

The explicit construction of these extremals reduces to the task of finding
an imbedding for an arbitrary free Maxwell field to H. One can also allow
source terms corresponding to the presence of the point like charges: these
should correspond to the regions of the space-time, where the flat space-time
approximation of the space-time fails. The regions where the approxima-
tion defining the Maxwell phase fails might correspond to a topologically
condensed CP2 type extremals, for example. As a consequence, Kähler field
is superposition of radiation type Kähler field and of Coulombic term. A
second possibility is the generation of ”hole” with similar Coulombic Kähler
field.

An important property of the Maxwell phase (also of massless extremals)
is its approximate canonical invariance. Canonical transformations do not
spoil the extremal property of the four-surface in the approximation used,
since it corresponds to a mere U(1) gauge transformation. This implies the
counter part of the vacuum degeneracy, that is, the existence of an enormous
number of four-surfaces with very nearly the same action. Also there is an
approximate Diff(M4

+) invariance.
The canonical degeneracy has some very interesting consequences con-

cerning the understanding of the electro-weak symmetry breaking and color
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confinement. Kähler field is canonical invariant and satisfies Maxwells equa-
tions. This is in accordance with the identification of Kähler field as U(1)
part of the electro-weak gauge field. Electromagnetic gauge field is a super-
position of Kähler field and Z0 field: γ = 3J − sin2(θW )Z0/2 so that also
electromagnetic gauge field is long ranged assuming that Z0 and W+ fields
are short ranged. These fields are not canonical invariants and their behav-
ior seems to be essentially random, which implies short range correlations
and the consequent massivation.

There is an objection against this argument. For the known D < 4 solu-
tions of field equations weak fields are not random at all. These situations
could represent asymptotic configurations assignable to space-time sheets.
This conforms with the interpretation that weak gauge fields are essentially
massless within the asymptotic space-time sheets representing weak bosons.
Gauge fields are however transferred between space-time sheets through #
contacts modellable as pieces of CP2 type extremals having D = 4. In con-
trast to Kähler and color gauge fluxes, weak gauge fluxes are not conserved
in the Euclidian time evolution between the 3-D causal horizons separating
the Euclidian # contact from space-time sheets with Minkowskian signa-
ture. This non-conservation implying the loss of coherence in the transfer
of fields between space-time sheets is a plausible mechanism for the loss of
correlations and massivation of the weak gauge fields.

Classical gluon fields are proportional to Kähler field and to the Hamil-
tonians associated with the color isometry generators.

gA
αβ = kHAJαβ . (72)

This implies that the direction of gluon fields in color algebra is random. One
can always perform a canonical transformation, which reduces to a global
color rotation in some arbitrary small region of space-time and reduces to
identity outside this region. The proportionality of a gluon field to Kähler
form implies that there is a classical long range correlation in X4 degrees of
freedom: in this sense classical gluon fields differ from massive electro-weak
fields in Maxwell phase.

5.5 Stationary, spherically symmetric extremals

The stationary, spherically symmetric extremals of the Kähler action imbed-
dable in M4 × S2, where S2 is geodesic sphere, are the simplest extremals,
which one can study as models for the space-time surrounding a topolog-
ically condensed particle, say CP2 type vacuum extremal. In the region
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near the particle the spherical symmetry is an unrealistic assumption since
it excludes the presence of magnetic fields needed to cancel the total Kähler
action. The stationarity is also unrealistic assumption since zitterbewegung
seems to provide a necessary mechanism for generating Kähler magnetic field
and for satisfying boundary conditions. Also the imbeddability to M4 × S2

implies unrealistic relationship between Z0 and photon charges.
According to the general wisdom, the generation of a Kähler electric field

must take place in order to minimize the action and it indeed turns out that
the extremal is characterized by essentially 1/r2 Kähler electric field. The
necessary presence of a hole or of a topologically condensed object is also
demonstrated: it is impossible to find extremals well defined in the region
surrounding the origin. It is impossible to satisfy boundary conditions at a
hole: this is in accordance with the idea that Euclidian region corresponding
to a CP2 type extremal performing zitterbewegung is generated. In case of
CP2 extremal radius is of the order of the Compton length of the particle
and in case of a ”hole” of the order of Planck length. The value of the
vacuum frequency ω is of order of particle mass whereas for macroscopic
vacuum extremals it must be of the order of 1/R. This does not lead to a
contradiction if the concept of a many-sheeted space-time is accepted.

The Poincare energy of the exterior region is considerably smaller than
the gravitational mass; this conforms with the interpretation that gravita-
tional mass is sum of absolute values of positive and negative inertial masses
associated with matter and negative energy antimatter. It is quite possible
that classical considerations cannot provide much understanding concerning
the inertial masses of topologically condensed particles. Electro-weak gauge
forces are considerably weaker than the gravitational force at large distances,
when the value of the frequency parameter ω is of order 1/R . Both these
desirable properties fail to be true if CP2 radius is of order Planck length
as believed earlier.

In light of the general ideas about topological condensation it is clear that
in planetary length scales these kind of extremals cannot provide a realistic
description of space-time. Indeed, spherically symmetric extremals predict
a wrong rate for the precession of the perihelion of Mercury. Scwhartschild
and Reissner-Nordström metric do this and indeed allow imbedding as vac-
uum extremals for which the inertial masses of positive energy matter and
negative energy antimatter sum up to zero.

This does not yet resolve the interpretational challenge due to the un-
avoidable long range color and weak gauge fields. A dark matter hierarchy
giving rise to a hierarchy of color and electro-weak physics characterized
by increasing values of weak and confinement scales explains these fields.
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# contacts involve a pair of causal horizons at which the Euclidian metric
signature of # contact transforms to Minkowskian one. These causal hori-
zons have interpretation as partons so that # contact can be regarded as
a bound state of partons bound together by a gravitational instanton (CP2

type extremal). # contacts provide basic example of dark matter creating
long ranged weak fields.

An important result is the correlation between the sign of the vac-
uum frequency ω and that of the Kähler charge, which is of opposite sign
for fermions and anti-fermions. This suggests an explanation for matter-
antimatter asymmetry. Matter and antimatter condense stably on disjoint
regions of the space-time surface at different space-time sheets. Stable anti-
matter could correspond to negative time orientation and negative energy.
This leads to a model for the primordial generation of matter as spontaneous
generation of zero energy # contacts between space-time sheets of opposite
time orientations. If CP conjugation is not exact symmetry, # contacts and
their CP conjugates are created with slightly different rates and this gives
rise to CP asymmetry at each of the two space-time sheets involved. After
the splitting of # contacts and subsequent annihilation of particles and an-
tiparticles at each space-time sheet, the two space-time sheets contain only
positive energy matter and negative energy antimatter. This model is de-
veloped in more detail in [F6] by applying general number theoretic ideas
and p-adic length scale hypothesis.

5.5.1 General solution ansatz

The general form of the solution ansatz is obtained by assuming that the
space-time surface in question is a sub-manifold of M4×S2, where S2 is the
homologically non-trivial geodesic sphere of CP2. S2 is most conveniently
realized as r = ∞ surface of CP2, for which all values of the coordinate
Ψ correspond to same point of CP2 so that one can use Θ and Φ as the
coordinates of S2.

The solution ansatz is given by the expression

cos(Θ) = u(r) ,

Φ = ωt ,

m0 = λt ,

rM = r , θM = θ , φM = φ . (73)

The induced metric is given by the expression
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ds2 =

[
λ2 − R2

4
ω2(1− u2)

]
dt2 − (1 +

R2

4
θ2
,r)dr2 − r2dΩ2 .

(74)

The value of the parameter λ is fixed by the condition gtt(∞) = 1:

λ2 − R2

4
ω2(1− u(∞)2) = 1 . (75)

From the condition e0∧e3 = 0 the non-vanishing components of the induced
Kähler field are given by the expression

Jtr =
ω

4
u,r . (76)

Geodesic sphere property implies that Z0 and photon fields are proportional
to Kähler field:

γ = (3− p/2)J ,

Z0 = J . (77)

From this formula one obtains the expressions

Qem =
(3− p/2)
4παem

QK , QZ =
1

4παZ
Q ,

Q ≡ Jtr4πr2

√−grrgtt
. (78)

for the electromagnetic and Z0 charges of the solution using e and gZ as
unit.

Field equations can be written as conditions for energy momentum con-
servation (two equations is in principle all what is needed in the case of
geodesic sphere). Energy conservation holds identically true and conserva-
tion of momentum, say, in z-direction gives the equation

(T rrz,r),r + (T θθz,θ),θ = 0 . (79)
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Using the explicit expressions for the components of the energy momentum
tensor

T rr = grrL/2 ,

T θθ = −gθθL/2 ,

L = gttgrr(Jtr)2
√

g/2 , (80)

and the following notations

A = gttgrrr2√−gttgrr ,

X ≡ (Jtr)2 , (81)

the field equations reduce to the following form

(grrAX),r − 2AX

r
= 0 . (82)

In the approximation grr = 1 this equation can be readily integrated to give
AX = C/r2. Integrating Eq. (82), one obtains integral equation for X

Jtr =
q

rc
(|grr|3gtt)1/4exp(

∫ r

rc

dr
grr

r
)
1
r

, (83)

where q is integration constant, which is related to the charge parameter of
the long range Kähler electric field associated with the solution. rc denotes
the critical radius at which the solution ceases to be well defined.

The inspection of this formula shows that Jtr behaves essentially as 1/r2

Coulomb field. This behavior doesn’t depend on the detailed properties of
the solution ansatz (for example the imbeddability to M4×S2): stationarity
and spherical symmetry is what matters only. The compactness of CP2

means that stationary, spherically symmetric solution is not possible in the
region containing origin. This is in concordance with the idea that either a
hole surrounds the origin or there is a topologically condensed CP2 extremal
performing zitterbewegung near the origin and making the solution non-
stationary and breaking spherical symmetry.

Second integration gives the following integral equation for CP2 coordi-
nate u = cos(Θ)
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u(r) = u0 +
4q

ω

∫ r

rc

(−g3
rrgtt)1/4 1

r
exp(

∫ r

rc

dr
grr

r
) . (84)

Here u0 denotes the value of the coordinate u at r = r0.
The form of the field equation suggests a natural iterative procedure for

the numerical construction of the solution for large values of r.

un(r) = Tn−1 , (85)

where Tn−1 is evaluated using the induced metric associated with un−1.
The physical content of the approximation procedure is clear: estimate the
gravitational effects using lower order solution since these are expected to
be small.

A more convenient manner to solve u is based on Taylor expansion
around the point V ≡ 1/r = 0. The coefficients appearing in the power
series expansion u =

∑
n unAnV n : A = q/ω can be solved by calculating

successive derivatives of the integral equation for u.
The lowest order solution is simply

u0 = u∞ , (86)

and the corresponding metric is flat metric. In the first order one obtains
for u(r) the expression

u = u∞ − 4q

ωr
, (87)

which expresses the fact that Kähler field behaves essentially as 1/r2 Coulomb
field. The behavior of u as a function of r is identical with that obtained
for the imbedding of the Reissner-Nordström solution.

To study the properties of the solution we fix the signs of the parameters
in the following manner:

u∞ < 0 , q < 0 , ω > 0 (88)

(reasons become clear later).
Concerning the behavior of the solution one can consider two different

cases.
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1) The condition gtt > 0 hold true for all values of Θ. In this case u
decreases and the rate of decrease gets faster for small values of r. This
means that in the lowest order the solution becomes certainly ill defined at
a critical radius r = rc given by the the condition u = 1: the reason is that
u cannot get values large than one. The expression of the critical radius is
given by

rc ≥ 4q

(|u∞|+ 1)ω

=
4αQem

(3− p/2)
1

(|u∞|+ 1)ω
. (89)

The presence of the critical radius for the actual solution is also a necessity
as the inspection of the expression for Jtr shows: ∂rθ grows near the origin
without bound and u = 1 is reached at some finite value of r. Boundary
conditions require that the quantity X = T rr√g vanishes at critical radius
(no momentum flows through the boundary). Substituting the expression
of Jtr from the field equation to T rr the expression for X reduces to a form,
from which it is clear that X cannot vanish. The cautious conclusion is
that boundary conditions cannot be satisfied and the underlying reason is
probably the stationarity and spherical symmetry of the solution. Physical
intuition suggests that that CP2 type extremal performing zitterbewegung
is needed to satisfy the boundary conditions.

2) gtt vanishes for some value of Θ. In this case the radial derivative of
u together with gtt can become zero for some value of r = rc. Boundary
conditions can be satisfied only provided rc = 0. Thus it seems that for
the values of ω satisfying the condition ω2 = 4λ2

R2sin2(Θ0)
it might be possible

to find a globally defined solution. The study of differential equation for u
however shows that the ansatz doesn’t work. The conclusion is that although
the boundary is generated it is not possible to satisfy boundary conditions.

A direct calculation of the coefficients un from power series expansion
gives the following third order polynomial approximation for u (V = 1/r)

u =
∑
n

unAnV n ,

u0 = u∞(< 0) , u1 = 1 ,

u2 = K|u∞| , u3 = K(1 + 4K|u∞|) ,

A ≡ 4q

ω
, K ≡ ω2 R2

4
.
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(90)

The coefficients u2 and u3 are indeed positive which means that the value
of the critical radius gets larger at least in these orders.

Solution contains three parameters: Kähler electric flux Q = 4πq, pa-
rameter ωR and parameter u∞. The latter parameters can be regarded as
parameters describing the properties of a flat vacuum extremal (lowest order
solution) to which particle like solution is glued and are analogous to the
parameters describing symmetry broken vacuum in gauge theories.

5.5.2 Solution is not a realistic model for topological condensa-
tion

The solution does not provide realistic model for topological condensation
although it gives indirect support for some essential assumptions of TGD
based description of Higgs mechanism.

a) When the value of ω is of the order of CP2 mass the solution could
be interpreted as the ”exterior metric” of a ”hole”.
i) The radius of the hole is of the order of CP2 length and its mass is of the
order of CP2 mass.
ii) Kähler electric field is generated and charge renormalization takes place
classically at CP2 length scales as is clear from the expression of Q(r):
Q(r) ∝ (−grr

gtt
)1/4 and charge increases at short distances.

iii) The existence of the critical radius is unavoidable but boundary condi-
tions cannot be satisfied. The failure to satisfy boundary conditions might
be related to stationarity or to the absence of magnetic field. The motion of
the boundary component with velocity of light might be the only manner to
satisfy boundary conditions. Second possibility is the breaking of spherical
symmetry by the generation of a static magnetic field.
iv) The absence of the Kähler magnetic field implies that the Kähler action
has an infinite magnitude and the probability of the configuration is zero.
A more realistic solution ansatz would break spherical symmetry containing
dipole type magnetic field in the nearby region of the hole. The motion of
the boundary with a velocity of light could serves as an alternative mecha-
nism for the generation of magnetic field. The third possibility, supported
by physical intuition, is that one must give up “hole” type extremal totally.

b) For sufficiently large values of r and for small values of ω (of the order
of elementary particle mass scale), the solution might provide an approxi-
mate description for the region surrounding elementary particle. Although
it is not possible to satisfy boundary conditions the order of magnitude es-
timate for the size of critical radius (rc ' α/ω) should hold true for more
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realistic solutions, too. The order of magnitude for the critical radius is
smaller than Compton length or larger if the vacuum parameter ω is larger
than the mass of the particle. In macroscopic length scales the value of ω
is of order 1/R. This does not lead to a contradiction if the many-sheeted
space-time concept is accepted so that ω < m corresponds to elementary
particle space-time sheet. An unrealistic feature of the solution is that the
relationship between Z0 and em charges is not correct: Z0 charge should be
very small in these length scales.

5.5.3 Exterior solution cannot be identified as a counter part of
Schwartshild solution

The first thing, which comes into mind is to ask whether one might identify
exterior solution as the TGD counterpart of the Schwartshild solution. The
identification of gravitational mass as absolute value of inertial mass which
is negative for antimatter implies that vacuum extremals are vacua only
with respect to the inertial four-momentum and have a non-vanishing grav-
itational four-momentum. Hence, in the approximation that the net density
of inertial mass vanishes, vacuum extremals provide the proper manner to
model matter, and the identification of spherically symmetric extremal as
the counterpart of Scwhartschild metric is certainly not possible. It is how-
ever useful to show explicitly that the identification is indeed unrealistic.
The solution is consistent with Equivalence Principle but the electro-weak
gauge forces are considerably weaker than gravitational forces. A wrong per-
ihelion shift is also predicted so that the identification as an exterior metric
of macroscopic objects is out of question.

1. Is Equivalence Principle respected?

TGD predicts the possibility of negative classical energy for space-time
sheets with negative time orientation, and the only manner to second quan-
tize induced spinor fields without diverging vacuum energy is by assum-
ing that fermions have positive energies and anti-fermions negative energies
(vice versa for phase conjugate fermions). This modifies the original form
of Equivalence Principle: gravitational mass can be interpreted as absolute
value of inertial mass so that the density of gravitational mass becomes the
difference of densities of inertial mass for matter and antimatter (or vice
versa). This interpretation leads to an elegant solution of the basic interpre-
tational difficulties created by the conservation of inertial four-momentum
and non-conservation of gravitational four-momentum.

The gravitational mass of the solution is determined from the asymptotic
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behavior of gtt and is given by

Mgr =
R2

G
ωqu∞ , (91)

and is proportional to the Kähler charge q of the solution.
One can estimate the gravitational mass density also by applying New-

tonian approximation to the time component of the metric gtt = 1 − 2Φgr.
One obtains Φgr corresponds in the lowest order approximation to a solution
of Einstein’s equations with the source consisting of a mass point at origin
and the energy density of the Kähler electric field. The effective value of
gravitational constant is however Geg = 8R2αK . Thus the only sensible in-
terpretation is that the density of Kähler (inertial) energy is only a fraction
G/Geq ≡ ε ' .22 × 10−6 of the density of gravitational mass. Hence the
densities of positive energy matter and negative energy antimatter cancel
each other in a good approximation.

The work with cosmic strings lead to a possible interpretation of the
solution as a space-time sheet containing topologically condensed magnetic
flux tube idealizable as a point. The negative Kähler electric action must
cancel the positive Kähler magnetic action. The resulting structure in turn
can condense to a vacuum extremal and Schwartshild metric is a good ap-
proximation for the metric.

One can estimate the contribution of the exterior region (r > rc) to the
inertial mass of the system and Equivalence principle requires this to be a
fraction of order ε about the gravitational mass unless the region r < rc

contains negative inertial mass density, which is of course quite possible.
Approximating the metric with a flat metric and using first order approxi-
mation for u(r) the energy reduces just to the standard Coulomb energy of
charged sphere with radius rc

MI(ext) =
1

32παK

∫

r>rc

E2√gd3x

' λq2

2αKrc
,

λ =

√
1 +

R2

4
ω2(1− u2∞) (> 1) . (92)

Approximating the metric with flat metric the contribution of the region
r > rc to the energy of the solution is given by
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MI(ext) =
1

8αK
λqω(1 + |u∞|) . (93)

The contribution is proportional to Kähler charge as expected. The ratio of
external inertial and gravitational masses is given by the expression

MI(ext)
Mgr

=
G

4R2αK
x ,

x =
(1 + |u∞|)
|u∞| > 1 . (94)

In the approximation used the the ratio of external inertial and gravitational
masses is of order 10−6 for R ∼ 104

√
G implied by the p-adic length scale

hypothesis and for x ∼ 1. The result conforms with the above discussed
interpretation.

2. Z0 and electromagnetic forces are much weaker than gravitational
force

The extremal in question carries Kähler charge and therefore also Z0 and
electromagnetic charge. This implies long range gauge interactions, which
ought to be weaker than gravitational interaction in the astrophysical scales.
This is indeed the case as the following argument shows.

Expressing the Kähler charge using Planck mass as unit and using the re-
lationships between gauge fields one obtains a direct measure for the strength
of the Z0 force as compared with the strength of gravitational force.

QZ ≡ εZMgr

√
G .

(95)

The value of the parameter εZ should be smaller than one. A transparent
form for this condition is obtained, when one writes Φ = ωt = Ωm0 : Ω =
λω:

εZ =
αK

αZ

1
π(1 + |u∞|)ΩR

√
G

R
. (96)

The order of magnitude is determined by the values of the parameters√
G
R2 ∼ 10−4 and ΩR. Global Minkowskian signature of the induced metric
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implies the condition ΩR < 2 for the allowed values of the parameter ΩR.
In macroscopic length scales one has ΩR ∼ 1 so that Z0 force is by a factor
of order 10−4 weaker than gravitational force. In elementary particle length
scales with ω ∼ m situation is completely different as expected.

3. The shift of the perihelion is predicted incorrectly

The grr component of Reissner-Nordström and TGD metrics are given
by the expressions

grr = − 1
(1− 2GM

r )
, (97)

and

grr ' 1−
Rq
ω2[

1− (u∞ − 4q
ωr )2

]
r4

, (98)

respectively. For reasonable values of q, ω and u∞ the this terms is extremely
small as compared with 1/r term so that these expressions differ by 1/r term.

The absence of the 1/r term from grr-component of the metric predicts
that the shift of the perihelion for elliptic plane orbits is about 2/3 times
that predicted by GRT so that the identification as a metric associated with
objects of a planetary scale leads to an experimental contradiction. Reissner-
Nordström solutions are obtained as vacuum extremals so that standard
predictions of GRT are obtained for the planetary motion.

One might hope that the generalization of the form of the spherically
symmetric ansatz by introducing the same modification as needed for the
imbedding of Reissner-Nordstrm̈ metric might help. The modification would
read as

cos(Θ) = u(r) ,

Φ = ωt + f(r) ,

m0 = λt + h(r) ,

rM = r , θM = θ , φM = φ . (99)

The vanishing of the gtr component of the metric gives the condition

λ∂rh− R2

4
sin2(Θ)ω∂rf = 0 . (100)
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The expression for the radial component of the metric transforms to

grr ' ∂rh
2 − 1− R2

4
(∂rΘ)2 − R2

4
sin2(Θ)∂rf

2 , (101)

Essentially the same perihelion shift as for Schwartschild metric is obtained
if grr approaches asymptotically to its expression for Schwartschild metric.
This is guaranteed if the following conditions hold true:

f(r)r→∞ → ωr , Λ2 − 1 =
R2ω2

4
sin2(Θ∞) ¿ 2GM

〈r〉 . (102)

In the second equation 〈r〉 corresponds to the average radius of the planetary
orbit.

The field equations for this ansatz can be written as conditions for en-
ergy momentum and color charge conservation. Two equations are enough
to determine the functions Θ(r) and f(r). The equation for momentum
conservation is same as before. Second field equation corresponds to the
conserved isometry current associated with the color isometry Φ → Φ + ε
and gives equation for f .

[T rrf,rsΦΦ
√

g],r = 0 . (103)

The conservation laws associated with other infinitesimal SU(2) rotations
of S2

I should be satisfied identically. This equation can be readily integrated
to give

T rrf,rsΦΦ
√

gttgrr =
C

r2
. (104)

Unfortunately, the result is inconsistent with the 1/r4 behavior of T rr and
f → ωr implies by correct red shift.

It seems that the only possible way out of the difficulty is to replace
spherical symmetry with a symmetry with respect to the rotations around
z-axis. The simplest modification of the solution ansatz is as follows:

m0 = λt + h(ρ) , Φ = ωt + kρ .

Thanks to the linear dependence of Φ on ρ, the conservation laws for mo-
mentum and color isospin reduce to the same condition. The ansatz induces
a small breaking of spherical symmetry by adding to gρρ the term
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(∂ρh)2 − R2

4
sin2(Θ)k2 .

One might hope that in the plane θ = π/2, where r = ρ holds true, the
ansatz could behave like Schwartschild metric if the conditions discussed
above are posed (including the condition k = ω). The breaking of the
spherical symmetry in the planetary system would be coded already to the
gravitational field of Sun.

Also the study of the imbeddings of Reissner-Nordström metric as vac-
uum extremals and the investigation of spherically symmetric (inertial) vac-
uum extremals for which gravitational four-momentum is conserved [D3]
leads to the conclusion that the loss of spherical symmetry due to rotation
is inevitable characteristic of realistic solutions.

5.6 The scalar waves of Tesla in TGD framework

The scalar waves or so called non-Hertzian waves of Nikola Tesla belong to
the fringe region of science. Many proponents of free energy believe that
scalar waves might provide a basis for a new energy and communication
technologies. Tesla himself was isolated from the official science and found
no place in text books because his hypothesis about scalar waves did not
fit within the framework of the Maxwell’s electrodynamics. Personally I
justified my personal prejudices against scalar waves by the observation that
the formulations for the notion of scalar waves that I had seen seemed to
be in a conflict with the cherished gauge invariance of gauge theories. The
discussions with a Finnish free energy enthusiast Juha Hartikka however led
me to reconsider the status of the scalar waves.

The surprise was that one can understand the non-Hertzian waves of
Tesla in TGD framework and that they are basically predicted by the
electric-magnetic duality of TGD. As a matter fact, TGD predicts huge
number of solutions of field equations representing constant energy den-
sity configurations of electric field assignable to bioelectrets which are in a
well defined sense dual to the magnetic flux tube structures with analogous
properties [I4, I5]. Thus the deep symmetry principle of electric-magnetic
duality allows to understand the basic structures of living matter. Also clas-
sical gravitational fields generated by classical field energy are predicted to
be important in the living matter. In the following scalar waves with con-
stant electric action density are discussed with the understanding that the
solution ansatz generalizes also to the case of magnetic field with a constant
action density.
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5.6.1 The properties of the scalar waves

Perhaps the most important properties of the scalar waves are following.
a) Scalar waves involve some kind of oscillatory process in the direction

of the propagation of the wave. The analogy with sound waves suggests
that the oscillation could relate to charge density, or more generally to 4-
current in the direction of the wave. Even massless extremals (MEs), which
are essentially topological light rays, involve vacuum current and vacuum
charge density which oscillates in the direction of propagation.

b) Scalar waves are believed to carry electric field in the direction of the
wave motion so that the identification of MEs as scalar waves is not possible.
The presence of only electric field means that scalar wave is characterized
solely by the scalar potential. This kind of solution is excluded by the gauge
invariance and linearity of Maxwell’s electrodynamics in vacuum.

5.6.2 Could nonlinearity of TGD allow scalar waves?

One is led to ask whether the nonlinearity of TGD might allow existence for
scalar waves.

a) In TGD based electrodynamics CP2 coordinates are the primary dy-
namical degrees of freedom gauge fields being secondary dynamical variables
induced from the spinor curvature of CP2. Field equations are extremely
nonlinear allowing among other things vacuum 4-currents (even Faraday’s
unipolar generator involves vacuum charge density changing its sign when
the direction of rotation of magnet changes its sign). This gives hopes about
finding solutions of field equations with the properties assigned to the hy-
pothetical scalar waves.

b) Interestingly, in TGD framework the canonical symmetries of CP2

are dynamical symmetries and act as isometries of the configuration space
of 3-surfaces. Canonical transformations act formally as U(1) gauge trans-
formations but, rather than being gauge symmetries, they are dynamical
generating new physical configurations and are partially responsible for the
quantum spin glass degeneracy of the TGD universe. As a matter fact, also
diffeormorphisms of M4 act as dynamical symmetries in the lowest order.

c) Magnetic flux tubes represent fundamental solutions of field equations
and the simplest magnetic flux tubes can be characterized as maps from a
region of a 2-dimensional Euclidian hyperplane E2 of Minkowski space to a
geodesic sphere S2 of CP2.

d) Electric-magnetic duality is a fundamental symmetry of the config-
uration space geometry. Therefore there should exist solutions dual to the
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magnetic flux tubes carrying only electric fields and perhaps allowing inter-
pretation as waves. These solutions would be characterized by a map from
a region of the Minkowskian hyperplane M2 of Minkowski space to S2. This
kind solution ansatz makes sense since it formally provides the solutions of
a field theory from M2 to S2.

5.6.3 Lowest order solution ansatz

One can write the field equations explicitely. They are however extremely
nonlinear and without physical intuition one cannot say much about the
solution spectrum of these equations. One can however make simplifying
assumptions to get grasp to the problem.

i) The effect of classical gravitation can be assumed to be extremely
weak except possibly at some singular regions associated with the solutions.
Interestingly, the electrogravitational effects associated with scalar waves
are standard free energy folklore. Since TGD predicts that classical field
energy couples to gravitation with a coupling strength which is 108 times
stronger than the ordinary gravitational coupling [G1], gravitational effects
could indeed become important.

ii) In Maxwellian theory without sources gauge current vanishes iden-
tically. This would suggest that it is good to start from a zeroth order
solution ansatz with this property so that the non-vanishing of the vacuum
current would be solely due to gravitational effects. It deserves to be noticed
that Tesla proposed also that non-Hertzian radiation fields involve a kind of
radiation charge.

In principle, one can imbed a portion of any solution of Maxwell’s equa-
tions in empty space as a space-time sheet (note the occurrence of the topo-
logical quantization) using M4 coordinates as preferred coordinates. Field
equations are satisfied in the lowest order in R2. The canonical symmetries
of CP2 act as dynamical symmetries for these solution ansätze and one ob-
tains infinite degeneracy of the space-time surfaces representing the same
Kähler field.

iii) Constant electric field represents the simplest field configuration one
can imagine. Therefore it is reasonable to start with this kind of solution
ansatz and to look whether gravitational corrections affect the solution and
bring in the wave aspect.

iv) Since wave motion is hoped to result, it is useful to choose the
space-time coordinates in an appropriate manner. Light like coordinates
(x+, x−, x, y) of M4 are thus very natural. They are defined by the condi-
tions
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t = (x+ + x−)/2 , z = (x+ − x−)/2 ,

with (t, x, y, z) referring to the linear Minkowski coordinates such that t is
time coordinate. In these coordinates the line element of M2 has the form
ds2 = −2dx+dx− so that one has g+− = −1.

v) Using the spherical coordinates (u = cos(Θ), Φ) for the geodesic
sphere S2 of CP2, the zeroth order solution ansatz has the following form:

u ≡ u0 = ω1x
+ , Φ ≡ Φ0 = ω2x

− . (105)

Since electromagnetic, Z0 and color fields are proportional to Kähler form
for the solution type considered, one can restrict the consideration to the
induced Kähler form. Denoting the Kähler form of CP2 by Jkl, by noticing
that S2 Kähler form is given by JuΦ = 1 (forgetting the precise normalization
factor), and using the expressions

[
suu = R2/(1− u2), sΦΦ = R2(1− u2)

]
for

the metric of S2, one can write the induced line element and the non-
vanishing component of the induced Kähler form as

ds2 = −2dx+dx− +
R2ω2

1

1− u2
(dx+)2 + R2ω2

2(1− u2)(dx−)2 − dx2 − dy2 ,

J+− = ∂+u∂−Φ = ω1ω2 ,

J+− =
ω1ω2

det(g)
.

(106)

Since the determinant of the induced metric is constant, J+− describes con-
stant electric field and that Kähler current jα is vanishes. This means that
Maxwell’s equations hold true in the zeroth order approximation as required.

Apart from the normalization factors the energy momentum tensor in
the longitudinal degrees of freedom is given by

Tαβ(long) = gαβL/4 ,

In the transversal degrees of freedom similar expression but with opposite
sign holds true. Here L is Kähler action which is essentially electric energy
density and constant.

In M4 degrees of freedom the field equations express conservation of the
energy momentum currents and are satisfied to order R2 since the action
is constant. These equations imply that action density is constant. This
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forces to ask whether all perturbatively constructible solutions represent a
constant Kähler electric field locally.

In CP2 degrees of freedom field equations involve a sum of two terms: the
first term involves the contraction of the energy momentum tensor with the
second fundmental form whereas the second term involves Kähler current.
Since Kähler current vanishes, the latter term vanishes and one can say
that field equations are satisfied in zeroth order approximation (the term
involving energy momentum tensor is proportional to CP2 length squared
and thus small). For exactly vanishing vacuum current the field equations
would reduce to the equations for a minimal surface:

gαβDβ∂αhk = 0 , (107)

where the imbedding space coordinates hk corresponds to u and Φ now. The
same equations result also in M4 degrees of freedom by requiring that the
terms of order R2 in the equation for the energy momentum conservation
vanish.

This equation is not satisfied exactly as is easy to see. The non-vanishing
components of the trace of the second fundamental form are given by

gαβDβ∂αu = −{ u
Φ Φ}ω2

2 ×
[
1− g++ω2

1R
2/(1− u2)

]
,

gαβDβ∂αΦ = −{ Φ
u Φ}ω1ω2 ×

[
1− g−−ω2

2R
2(1− u2)

]
. (108)

Here { α
β γ} denote the components of the Riemann connection for sphere.

It is seen that the connection term gives contributions which vanish only at
u = 0 which corresponds to the equator of the geodesic sphere S2. At poles
the minimal surface condition fails to be satisfied.

5.6.4 First order corrections to the solution ansatz

To take into account gravitational corrections one must modify the solution
ansatz in such a manner that x− does not appear in the field equations
at all: this guarantees that field equations reduce to ordinary differential
equations. The modification is following:

u = u0 + u1(x+) , Φ = Φ0 + Φ1(x+) . (109)

The modification affects the electric field and vacuum current and allows
the compensation of the terms resulting form the contractions of the energy
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momentum tensor and vacuum current. The modification means that wave
equations are still satisfied for u and Φ. Note that second fundamental form
does not contain second derivative terms in the lowest order approximation.

The derivation of the differential equations for u1 and Φ1 is completely
straightforward but requires some patience with numerical factors (reader
should check sign factors and numerical factors).

a) Calculate the the current contraction term

jα
[
Jk

r ∂αhr − Jµ
α∂µhk

]

and energy momentum tensor contraction term

TαβDβ∂αhk

and equate these terms. Effective two-dimensionality makes the explicit
calculations relatively simple.

b) The equations for u and Φ in terms of j± read as

j−(1− u2
0) + j+ε1ε2 = { u

Φ Φ}Kε22
2 ≡ X1 ,

j+ 1
(1−u2

0)
j−ε22 = −2{ Φ

u Φ}Kε1ε2 ≡ X2 ,

Here the notations εi = ωiR and K = ω1ω
2
2 are used. Linear second order

differential equations are in question with the right side serving as an in-
homogenuity term.

c) One can solve j+ and j− from these equations to get




j+

j−


 = 1

ε1ε32−1
×




ε22 −(1− u2
0)

−1/(1− u2
0) ε1ε2


×




X1

X2


 ≡




Y1

Y2




From this form one can see that j− becomes singular at u0 = ±1 as 1/(1−u2
0)

which means that light like vacuum current is generated. The physical in-
terpretation is that vacuum charge density at these points which correspond
to the boundaries of the solution acting as the source of the vacuum electric
field is in question.

d) One can calculate j± by calculating the covariant divergence of the
induce Kähler field in the lowest non-trivial order. The calculation gives the
following expression
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


j+

j−


 = ω1




u0∂
2
+u1 + ε1ε2(1− u2

0)∂
2
+Φ1

ω1ε2∂
2
+u1 − ε1(1− u2

0)∂
2
+Φ1




e) For u1 one finds the equation

∂2
+u1 + ε1ε

2
2ω1u0∂+u1 =

1
ω1
× (Y1 + ε1Y2)

=
ω2

2

2
ε1

ε1ε32 − 1
× u0 ×

[
−ε42(1− u2

0) + ε1ε2(−2 + ε1)− ε31ε2
1

1− u2
0

]
.(110)

This equation reduces to a first order differential equation for u1 and one
can solve it by variation of integration constants. The singularity at u = ±1
implies a logarithmic singularity of the derivative

∂+u1 ∼ log(1− u2
0)

but u remains finite as it should.
f) One can integrate Φ1 from the second order inhomogenous and linear

equation

∂+
2 Φ1 =

1
ε1ε2(1− u2

0)

[
j− − ω2∂

2
+u1

]
,

j− =
ω1ω

2
2ε1ε2

2(ε1ε32 − 1)
× u0 ×

[
1− 2ε21

1− u2
0

]
, (111)

once the solution for u1 is known. Note that the most singular part corre-
sponds to u0/(1 − u2

0)
2 type term and one obtains logarithmic singularity

also now.

5.6.5 Properties of the solution ansatz

The form of the differential equations for the first order corrections allows
to conclude that the North and South poles of the geodesic sphere S2 (the
points u0 = ±1) correspond to singularities of the solution. Both the compo-
nents of the induced metric and the induced Kähler form become singular at
these points. This means that classical gravitation becomes important near
these points. These points correspond in the lowest order approximation to
the lines x+ = ±1/ω1 ≡ T plus possibly the lines obtained by continuing
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the solution by assuming that x− = constant lines define a motion identi-
fiable constant rotation along the big circle from θ = 0 (x+ = T ) to θ = π
(x+ = −T ) continuing in the same manner to θ = 0 at (x = 2T ) and so on.
Therefore gravitational effects induce a periodical behavior of the solution
such that gravitational effects become strong at x+ = (2n + 1)T .

In the next order electric field is not constant anymore and vacuum
current is generated. The contravariant component of electric field, being
proportional to 1/∂+u near singularity, vanishes at the singularity whereas
the tangential component j− of the vacuum current diverges. The vacuum
current should generate coherent photons.

By a straightforward calculation one finds that the curvature scalar be-
haves as R ∝ 1/(1 − u2

0) at the singularities so that the energy density of
vacuum becomes singular and could generate a coherent state of gravitons.
Since Einstein tensor vanishes identically in two-dimensional case, the lon-
gitudinal components G++, G−− and G+− of Einstein tensor vanish. The
components of Einstein tensor in transverse degrees of freedom are given
by Galphaβ = −gαβR/2. Therefore the energy momentum tensor defined by
Einstein’s equations would involve only space-like momentum currents. The
singularity is amplified by the fact that field energy couples to the classical
gravitation with coupling which is 108 times stronger than the ordinary grav-
itational coupling. The singularity might relate to the claimed gravitational
anomalies associated with the scalar waves.

As already found, Einstein tensor and gauge current have no components
in the direction of x+. Energy-momentum tensor behaves as 1/det(g)3/2 at
the end points of the interval [−T, T ] and thus vanishes. Therefore con-
servation laws allow to restrict the solution into the x+ interval (−T, T ).
This restricted solution defines geometrically a particle like structure mov-
ing in x− direction but with fields moving in x+ direction so that one would
have rather exotic kind of particle-wave dualism. In accordance with the
quantum-classical correspondence, one could interpret this as classical space-
time representation of the particle wave duality and the solution would be
a particular example of topological field quantization.

5.6.6 More general solutions representing electric field of con-
stant action density are possible

The solution ansatz just discussed represents a constant electric field in
a region of space-time moving with light velocity in the direction of x−

coordinate. Also ordinary constant electric fied is a possible solution and is
constructed iteratively in an essentially identical manner by starting from
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the solution ansatz

u = kz , Φ = ωt . (112)

Also now Kähler current vanishes in the lowest order and action density
is constant so that lowest order field equations are satisfied. Higher order
corrections are obtained using the ansatz u1 = u1(z), Φ = Φ1(z). Min-
imal surface condition gives now essentially same kind of expressions for
u1 and Φ1. Also now the singularities where gravitational interaction be-
comes strong are at u = ±1 and one can select the solution to represent a
membrane like structure with thickness L = 2/k.

Cell membrane space-time sheets are good candidates for the realization
of this kind of solutions. If so, one might expect that classical gravitational
effects become important at the boundaries of the cell membrane. More
generally, bio-systems are electrets and the proposed solution type might
provide a fundamental model for bio-electrets. In particular, electrogravitic
effects due to the energy of the classical electric field might be of importance.

This observation relates interestingly to the sol-gel phase transitions oc-
curring inside cell. In these transitions large scale bound states of water
molecules are formed and could make possible macrotemporally quantum
coherent systems able to perform quantum computations in time scales of
order say .1 seconds. These bound states would be characterized by spin
glass degeneracy broken only by the classical gravitation and spin glass
degeneracy would make these bound states longlived. In the case of the pro-
posed solution ansätze spin glass degeneracy corresponds to the canonical
symmetries of CP2 generating new solutions representing constant electric
field.

Also M4 diffeomorphisms are symmetries of the field equations broken
only by the classical gravitation. Approximate diffeomorphism invariance
means that one obtains solutions for which the lines of electric flux are curved
and only the action density stays constant. In the case of magnetic flux tubes
this symmetry makes possible curved magnetic flux tubes. Both electric
fields and the magnetic flux tubes are fundamental for the TGD based model
of living matter and relate deeply to the electric-magnetic duality symmetry
and to the quantum criticality predicting that magnetic and electric space-
time regions having opposite signs of Kähler action play a role similar to the
ice and water regions at critical point of water, are important physically.
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6 Can one determine experimentally the shape of
the space-time surface?

If physics were purely classical physics, operationalism in the strong sense of
the word would require that one can experimentally determine the shape of
the space-time as a surface of the imbedding space with arbitrary accuracy
by measuring suitable classical observables. In quantum physics situation is
considerably more complex and quantum effects are both a blessing and a
curse.

6.1 Measuring classically the shape of the space-time surface

Consider first the purely classical situation to see what is involved.
a) All classical gauge fields are expressible in terms of CP2 coordinates

and their space-time gradients so that the measurement of four field quanti-
ties with some finite resolution in some space-time volume could in principle
give enough information to deduce the remaining field quantities. The re-
quirement that space-time surface corresponds to an extremal of Kähler
action gives a further strong consistency constraint and one can in principle
test whether this constraint is satisfied. A highly overdetermined system is
in question.

b) The freedom to choose the space-time coordinates freely causes com-
plications and it seems that one must be able to determine also the distances
between the points at which the field quantities are determined. At purely
classical Riemannian level this boils down to the measurement of the induced
metric defining classical gravitational field. In macroscopic length scales one
could base the approach to iterative procedure in which one starts from the
assumption that the coordinates used are Minkowski coordinates and grav-
itational corrections are very weak.

c) The measurement of induced Kähler form in some space-time vol-
ume determines space-time surface only modulo canonical transformations
of CP2 and isometries of the imbedding space. If one measures classical
electromagnetic field, which is not canonical invariant in general case, with
some precision, one can determine to what kind of surface space-time region
corresponds apart from the action of the isometries of H.
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6.2 Quantum measurement of the shape of the space-time
surface

In practice the measurement of the shape of the space-time surface is neces-
sarily a bootstrap procedure based on the model for space-time region and
on the requirement of internal consistency. Many-sheeted space-time and
quantum phenomena produce considerable complications but also provide
universal measurement standards.

Consider first how quantum effects could help to measure classical fields
and distances.

a) The measurement of distances by measuring first induced metric
at each point of space-time sheet is rather unpractical procedure. Many-
sheeted space-time however comes in rescue here. p-Adic length scale hy-
pothesis provides a hierarchy of natural length scales and one can use p-adic
length and time scales as natural units of length and time: space-time sheets
serve as meter sticks. For instance, length measurement reduces in principle
to a finite number of operations using various space-time sheets with stan-
dardized lengths given by p-adic length scales. Also various transition fre-
quencies and corresponding wavelengths provide universal time and length
units. Atomic clock provides a standard example of this kind of time unit. A
highly nontrivial implication is the possibility to deduce the composition of
distant star from its spectral lines. Without p-adic length scale hypothesis
the scales for the mass spectra of the elementary particles would be variable
and atomic spectra would vary from point to point in TGD universe.

Do the p-adic length scales correspond to the length units of the induced
metric or of M4

+ metric? If the topological condensation a meter stick space-
time sheet at a larger space-time sheet does not stretch the meter stick but
only bends it, the length topologically condensed meter stick in the induced
metric equals to its original length measured using M4

+ metric.
b) If superconducting order parameters are expressible in terms of the

CP2 coordinates (there is evidence for this, see the chapter ”Macroscopic
quantum phenomena and CP2 geometry”), one might determine directly the
CP2 coordinates as functions of Minkowski coordinates and this would allow
to estimate all classical fields directly and thus to deduce strong consistency
constraints.

c) At quantum level only the fluxes of the classical fields through surface
areas with some minimum size determined by the length scale resolution
can be measured. In case of magnetic fields the quantization of the mag-
netic flux simplifies the situation dramatically. Topological field quantiza-
tion quite generally modifies the measurement of continuous field variables

99



to the measurement of fluxes. Interestingly, the construction of the con-
figuration space geometry uses as configuration space coordinates various
electric and magnetic fluxes over 2-dimensional cross sections of 3-surface.

Quantum effects introduce also difficulties and restrictions.
a) Canonical transformations localized with respect to the boundary of

the light cone or more general light like surfaces act as isometries of the con-
figuration space and one can determine the space-time surface only modulo
these isometries. Even more, only the values of the non-quantum fluctuat-
ing zero modes characterizing the shape and size of the space-time surface
are measurable with arbitrary precision in quantum theory. At the level of
conscious experience quantum fluctuating degrees of freedom correspond to
sensory qualia like color having no classical geometric content.

b) Space-time surface is replaced by a new one in each quantum jump
(or rather the superposition of perceptively equivalent space-time surfaces).
Only in the approximation that the change of the space-time region in single
quantum jump is negligible, the measurement of the shape of space-time
surface makes sense. The physical criterion for this is that dissipation is
negligible. The change of the space-time region in single quantum jump can
indeed be negligible if the measurement is performed with a finite resolution.

c) Conscious experience of self is an average over quantum jumps defining
moments of consciousness. In particular, only the average increment of the
zero modes is experienced and this means that one cannot fix the space-time
surface apart from canonical transformation affecting the zero modes. Again
the notion of measurement resolution comes in rescue.

d) The possibility of coherent states of photons and gravitons brings in
a further quantum complication since the effective classical em and gravi-
tational fields are superpositions of classical field and the order parameter
describing the coherent state. In principle the extremely strong constraints
between the classical field quantities allow to measure both the order pa-
rameters of the coherent phases and classical fields.
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